Excellent Integrated System Limited

Stocking Distributor

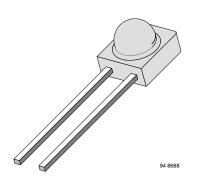
Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Opto Division</u> <u>TSSF4500</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited Datasheet of TSSF4500 - EMITTER IR 890NM 100MA RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



TSSF4500

COMPLIANT GREEN

Vishay Semiconductors

High Speed Infrared Emitting Diode, 890 nm, GaAlAs Double Hetero

TSSF4500 is an infrared, 890 nm emitting diode in GaAlAs

double hetero (DH) technology with high radiant power and high speed, molded in a clear, untinted plastic package.

FEATURES

Package type: leaded

• Package form: side view

• Dimensions (L x W x H in mm): 4.5 x 4 x 4.8

• Peak wavelength: $\lambda_p = 890 \text{ nm}$

· High reliability

High radiant power

High radiant intensity

• Angle of half intensity: $\varphi = \pm 22^{\circ}$

Low forward voltage

• Suitable for high pulse current operation

• High modulation bandwidth: f_c = 12 MHz

· Good spectral matching with Si photodetectors

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- Infrared high speed remote control and free air data transmission systems with high modulation frequencies or high data transmission rate requirements
- TSSF4500 is ideal for the design of transmission systems according to IrDA requirements and for carrier frequency based systems (e.g. ASK/FSK - coded, 450 kHz or 1.3 MHz)

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)	
TSSF4500	20	± 22	890	30	

Note

DESCRIPTION

· Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
TSSF4500	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	Side view		

Note

• MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V_R	5	V
Forward current		I _F	100	mA
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA
Surge forward current	t _p = 100 μs	I _{FSM}	1.5	Α
Power dissipation		P _V	160	mW

Rev. 1.7, 24-Aug-11 Document Number: 81040

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited Datasheet of TSSF4500 - EMITTER IR 890NM 100MA RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

TSSF4500

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	$t \le 5$ s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction/ambient	Leads not soldered	R _{thJA}	450	K/W	

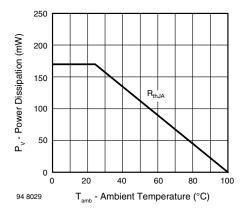


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

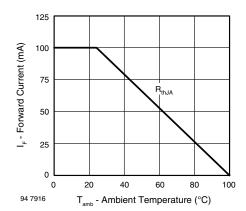


Fig. 2 - Forward Current Limit vs. Ambient Temperature

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Famurard voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.35	1.6	V
Forward voltage	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	V _F		2.4		V
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		- 1.8		mV/K
Reverse current	V _R = 5 V	I _R			10	μΑ
Junction capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	C _j		160		pF
Radiant intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	I _e	10	20	50	mW/sr
	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	l _e		200		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фe		35		mW
Temperature coefficient of φ _e	I _F = 100 mA	TKφ _e		- 0.7		%/K
Angle of half intensity		φ		± 22		deg
Peak wavelength	I _F = 100 mA	λ_{p}		890		nm
Spectral bandwidth	I _F = 100 mA	Δλ		40		nm
Temperature coefficient of λ_p	I _F = 100 mA	TKλ _p		0.2		nm/K
Rise time	I _F = 100 mA	t _r		30		ns
Fall time	I _F = 100 mA	t _f		30		ns
Cut-off frequency	$I_{DC} = 70 \text{ mA}, I_{AC} = 30 \text{ mA pp}$	f _c		12		MHz
Virtual source diameter		d		2.1		mm

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited

Datasheet of TSSF4500 - EMITTER IR 890NM 100MA RADIAL

TSSF4500

Vishay Semiconductors

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

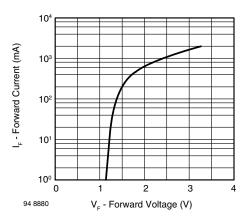


Fig. 3 - Forward Current vs. Forward Voltage

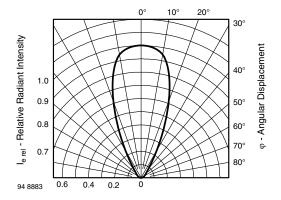


Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

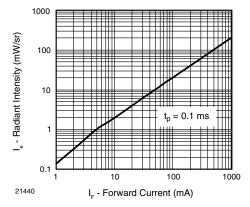


Fig. 4 - Radiant Intensity vs. Forward Current

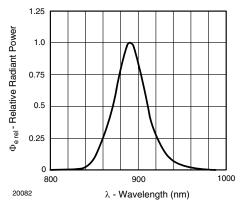
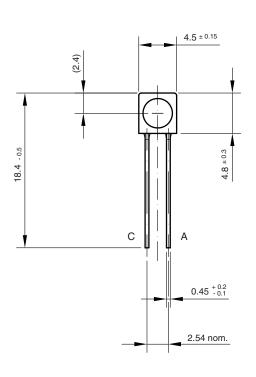
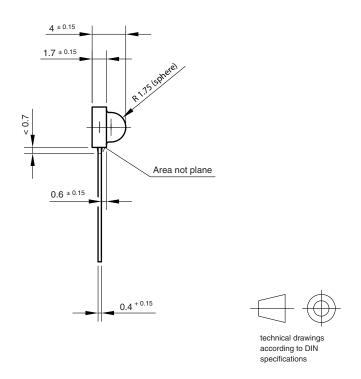


Fig. 5 - Relative Radiant Power vs. Wavelength

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited

Datasheet of TSSF4500 - EMITTER IR 890NM 100MA RADIAL


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



TSSF4500

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5253.01-4

Issue:1; 01.07.96

96 12206

Distributor of Vishay Semiconductor/Opto Division: Excellent Integrated System Limited Datasheet of TSSF4500 - EMITTER IR 890NM 100MA RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000