

Excellent Integrated System Limited

Stocking Distributor

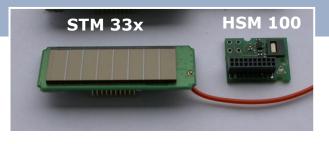
Click to view price, real time Inventory, Delivery & Lifecycle Information:

Enocean HSM100

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

DATA SHEET V1.2

Humidity Sensor Module HSM 100


The humidity sensor module HSM 100 extends the functionality of STM 33x / STM 330C / STM 33xU / STM 431J temperature sensor modules.

Functional Principle

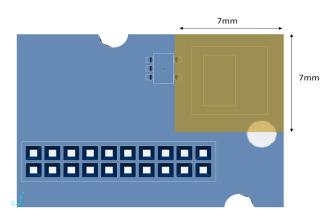
HSM 100 contains an internal calibrated humidity sensor. It can be plugged onto members of the STM 33x / STM 431J module family via a 20 pin connector. The sensor signal is read via the ADIO3 input of STM 33x / STM 431J.

In order to be able to read the sensor signal, STM 33x / STM 431J has to be configured to an EEP supporting humidity. This can be done via Dolphin Studio.

Features Overview

Type HSM 100

Ordering Code S3095-D100


Humidity sensor	measurement range 0%-100% r.h. resolution 0.4% r.h.
	accuracy typ. ±5% r.h. between 30%-70% r.h. and 0-40°C
Power supply	via SWPWR pin from STM 33x / STM 330C / STM 33xU / STM 431J
Module dimensions	18 x 13 mm
Operating temperature	-20 up to +60 °C

Please ensure sufficient ventilation of air inside the housing. Otherwise the measurement will not represent ambient humidity.

Please avoid any material within 2mm distance from the 7mm x 7mm area depicted in the figure below (in plane as well as above and below the PCB). The measurement might be influenced by detuning the capacitive sensor.

DATA SHEET V1.2

Distributor of Enocean: Excellent Integrated System Limited Datasheet of HSM100 - BOARD PIGGYBACK FOR STM330 MOD Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

<u>ح</u> ۵۵ ن	6 F]			Ben X H →
	 1)Leiterplatten Gesamtdicke mit Leiterbahnen und Lötstoplack PC board total thickness with conductor paths and solder resist 2) Toleranz für Fräskante: 13 ± 0.2 toleranz für Bohrungstand (Ø2±0.05): 13 ± 0.1 3) Toleranz für Bohrungstand (Ø2±0.05): 13 ± 0.1 	e pitch (v∠±u.uc): ci ± u.i ehöhe max. 0.8 mm height max. 0.8 mm	Messstab 5:1	Modul HSM100	A55-C01
5 6 	 1)Leiterplatten Gesamtdicke mit Leitert PC board total thickness with conduct 2) Toleranz für Fräskante: 13 ± 0.2 tolerance for milled edge: 13 ± 0.2 3) Toleranz für Bohrungsabstand (Ø240.000) 	tolerance for nole pitch (φ∠±⊻∪.UJ): 4) restliche Bauteilehöhe max. 0.8 mm remaining component height max. 0.8 mm	<i>z</i> i	Mile 18, 01, 11 Mile	Image: Non-state XXXXX Image: Non-state Image: No-state Image: No-state
6.86±0.4 € 10.2 ±0.4 ±0.2		Toleranz / tolerance ±0.2	± 0.3 ± 0.3	± 0.1	± 0.15
6.86 ±0.4	13.140.3	Versatz / displacement Fräskante zu Bohrungen milled edge to holes	Fräskante zu Leiterbild milled edge to conductive pattern Ritzkante zu Bohrungen score edge to holes	Bohr ungen holes	Bohrungen zu Leiterbild holes to conductive pattern 1 2
L≪ <u>α</u> ω	0	NDBREINKL DRVF (ODWARLONGLINF) WTE NEGHE ANBERN IDW NDBREINKL DRVF (ODWARLONGLINF) WTE NEGHE ANBERN IDW WE BELBIEBERD DRVF (ODWARLONGLINF) WTE NEGHE ANBERN IDW			