# **Excellent Integrated System Limited** Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: STMicroelectronics PM6613NTR For any questions, you can email us directly: <a href="mailto:sales@integrated-circuit.com">sales@integrated-circuit.com</a> ### **PM6613N** # 2 to 4-cell Li-Ion, Li-FePO<sub>4</sub> battery charger with SMBus interface, N-channel RBFET and BATFET MOSFET selectors Datasheet - production data #### **Features** - Synchronous buck converter with N-channel high-side, low-side power MOSFET integrated drivers - 350 kHz or 700 kHz switching frequency, selectable with SMBus - AC adapter input voltage range 9 V 24 V - 5 V bias input voltage supply - Battery charge voltage range 2.5 V -18 V - ±1.53% charge voltage accuracy - 0.1% cell charge voltage resolution - ±3% charge current accuracy - ±3% input current accuracy - · Overvoltage, overcurrent protections - Battery, inductor, power MOSFET short-circuit protection - Internal loop compensation network - Integrated soft-start - Selector - N-channel ACFET/RBFET MOSFET driver - N-channel BATFET MOSFET driver - System - 1 mA quiescent supply current - 17 $\mu A$ 35 $\mu A$ sleep mode current (BATFET charge pump off on) - Thermal shutdown list ### **Applications** - Mobile PC: - UMPC/MID and tablets - Netbook and notebook computers ### **Description** The PM6613N is a high efficiency battery charger with SMBus communication interface. It includes a synchronous switching DC-DC converter with N-channel high-side and low-side power MOSFET drivers. The possibility to set the switching frequency with SMBus by choosing one of the two preset values of 350 kHz or 700 kHz assures the best trade-off between power conversion efficiency and PCB cost and size. Integrated loop compensation network and softstart allow the reduction of the number of external components. The PM6613N integrates 2 charge pumps to drive N-channel ACFET/RBFET and BATFET MOSFETs. The SMBus communication interface is used to set the battery charge current and voltage. The PM6613N charges 2 to 4 series Li-Ion or LiFePO<sub>4</sub> cells, for mobile PC applications. It is available in a compact VFQFPN 3x3 mm package. Table 1. Device summary | Order code | Package | Packing | | |------------|----------------|---------------|--| | PM6613NTR | VFQFPN 3x3 20L | Tape and reel | | 2/30 **Contents** PM6613N ### **Contents** | 1 | Devi | ce pinout | 4 | |------|-------|---------------------------------------------------|------------| | 2 | Pin c | description | 5 | | 3 | Elec | trical characteristics | 8 | | | 3.1 | Absolute maximum ratings | 8 | | | 3.2 | Operating characteristics | 12 | | | 3.3 | Recommended operating conditions | 13 | | 4 | Oper | rating description | 15 | | | 4.1 | SMBus communication interface | 15 | | | 4.2 | ACFET/RBFET and BATFET system power selectors | 17 | | | 4.3 | Adapter detection | 18 | | | 4.4 | Internal charge pumps | 18 | | | 4.5 | Switching frequency selection and EMI adjustments | 18 | | | 4.6 | Charge settings | 18 | | | 4.7 | Adapter constant power function | 19 | | | 4.8 | Input current limit protection | 20 | | | 4.9 | Thermal shutdown | 20 | | | 4.10 | Battery protection | 20 | | | 4.11 | Adapter insertion | 20 | | | 4.12 | Adapter removal | 21 | | 5 | The | PM6613N registers | 22 | | | 5.1 | Charge option register (CHRG_OPT) | 22 | | | 5.2 | STATUS register | 24 | | | 5.3 | Charge current register (CHRG_AMP) | 25 | | | 5.4 | Charge voltage register (CHRG_VOLT) | 26 | | | 5.5 | Input current register (INPUT_AMP) | 26 | | 6 | Pack | kage mechanical data | 27 | | 7 | Revi | sion history | 29 | | 2/30 | | DocID024974 Rev 3 | <b>47/</b> | DocID024974 Rev 3 PM6613N List of tables # List of tables | Table 1. | Device summary | 1 | |-----------|---------------------------------------------------------------|----| | Table 2. | Pin description | | | Table 3. | Voltage characteristics | 8 | | Table 4. | Thermal characteristics | 8 | | Table 5. | Electrical characteristics | 9 | | Table 6. | Typical operating characteristics | 12 | | Table 7. | Recommended operating conditions | 13 | | Table 8. | SMBus communication timing values | 14 | | Table 9. | Low power SMBus DC specifications | 14 | | Table 10. | SMBus command summary | 17 | | Table 11. | Valid battery charge voltage ranges for Li-Ion battery cells | 19 | | Table 12. | Valid battery charge voltage ranges for LiFePO4 battery cells | 19 | | Table 13. | Battery overvoltage detection ranges | 20 | | Table 14. | Adapter insertion sequence | 21 | | Table 15. | Adapter removal sequence | 21 | | Table 16. | CHRG_OPT 0x12 | 22 | | Table 17. | Status 0x13 | 24 | | Table 18. | CHRG_AMP 0x14 | 25 | | Table 19. | CHRG_VOLT 0x15 | 26 | | Table 20. | INPUT_AMP 0x3F | 26 | | Table 21. | VFQFPN 3x3x1.0 20 L pitch 0.4 package dimensions | 27 | | Table 22. | Document revision history | 29 | 4/30 Device pinout PM6613N # 1 Device pinout PM6613N Pin description # 2 Pin description Table 2. Pin description | Pin | Name | Description | |-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | PH | High-side power nMOS driver source. Connection to the high-side nMOS source pin and low-side nMOS drain pin. | | 2 | HIGH | High-side power nMOS driver output. Connection to the high-side nMOS gate pin. In critical application conditions, a series resistor can be used to increase the nMOS turn-on/off time and to limit the phase ringing, R = 4.7 $\Omega$ . | | 3 | BTST | High-side power nMOS driver power supply. Connection to 5 V power supply voltage through a Schottky diode, and to the phase net through a filtering capacitor. | | 4 | LOW | Low-side power nMOS driver output. Connection to the low-side nMOS gate pin. In critical application conditions, a series resistor can be used to increase the nMOS turn-on/off time and to limit the phase ringing, $R=4.7\Omega$ . | | 5 | GND | Device analog and power ground reference. | | 6 | DCIN | 5 V input power supply. It is used to bias the internal logic and to supply the internal power drivers. An RC filter is used to limit inrush current and voltage spikes, typical value R=1 $\Omega$ , C=10 $\mu$ F. | | 7 | SRP | Battery charge current sense resistor positive pin. | | 8 | SRN | Battery charge current sense resistor negative pin. | | 9 | BATFET | nMOS driver output. Connection to the BATFET nMOS gate pin, through a series resistor used to limit the inrush current. | | 10 | ACN | Input current sense resistor negative input. System power connection. | | 11 | ACP | Input current sense resistor positive input. RBFET nNMOS drain pin connection. | | 12 | ACDRV | nMOS driver output. Connection to the ACFET and RBFET nMOS gate pin, through a series resistor used to limit the inrush current. | | 13 | B2B | Output driven by AC adapter back-to-back MOS switches. Connection to the ACFET and RBFET nMOS source pins. | | 14 | ACDIV | Adapter detection pin. Adapter resistor divider connection. | | 15 | ILIM | Battery charge current limit setting pin. | | 16 | ACOK | AC adapter detection status pin. Open-drain pin. It pulls high, when a valid adapter voltage is detected: 2 V < ACDIV < 2.625 V. It pulls low when ACDIV > 2.625 V or ACDIV < 2 V. | | 17 | IOUT | Adapter/battery charge current output pin, selectable using SMBus command. I <sub>OUT</sub> voltage is 20 times the differential voltage across sense resistor. | | 18 | ALARM# | Open-drain output pin. Low when a fault condition is detected, to trigger the system microcontroller interrupt. | ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com Pin description PM6613N #### **Table 2. Pin description (continued)** | Pin | Name | Description | |-----|------|--------------------------------------------------------------------------------------------------------------------| | 19 | SCL | SMBus clock pin. Connection to the SMBus clock line. Open-drain pin, a pull-up resistor R = 10 k $\Omega$ is used. | | 20 | SDA | SMBus data pin. Connection to the SMBus data line. Open-drain pin, a pull-up resistor R = 10 k $\Omega$ is used. | PM6613N Pin description Figure 2. Typical application circuit Electrical characteristics PM6613N ### 3 Electrical characteristics ### 3.1 Absolute maximum ratings Stresses beyond those listed in "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. **Table 3. Voltage characteristics** | PINs | Values | Unit | |-------------------------------------|-------------|------| | BATFET, ACDRV, BTST, HIGH to GND | -0.3 to 36 | | | SRP, SRN, B2B, ACP, ACN to GND | -0.3 to 30 | | | LOW, DCIN, ACDIV, ILIM to GND | -0.3 to 6 | | | PH to GND | -2 to 30 | | | BTST to PH | -0.3 to 6 | V | | ACOK, IOUT, ALARM#, SCL, SDA to GND | -0.3 to 6 | | | SRP to SRN, ACP to ACN | -0.5 to 0.5 | | | ACDRV to B2B | -0.3 to 7 | | | BATFET to SRN | -0.3 to 7 | | **Table 4. Thermal characteristics** | Symbol | Parameters Values | | | | |---------------------|----------------------------------------|------------|------|--| | R <sub>th(JA)</sub> | Thermal resistance junction-to-ambient | 45 | °C/W | | | $T_J$ | Junction operating temperature range | -40 to 125 | | | | T <sub>A</sub> | Ambient operating temperature range | -40 to 85 | °C | | | T <sub>stg</sub> | Storage temperature range | -50 to 150 | | | PM6613N #### **Electrical characteristics** Table 5. Electrical characteristics | Symbol | Parameters | Test conditions | Min. | Тур. | Max. | Unit | |------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|-------|------|------| | Supply current | | | | -76- | | | | Supply current | T | | | I | | | | I <sub>SLP</sub> | Total current (DCIN, SRN, SRP, ACP, ACN, PH) | ACDIV < ACDIV <sub>SLP</sub><br>BATFET on | | 40 | 60 | uA | | SLP | consumption in sleep mode | $\begin{array}{c} ACDIV < ACDIV_{SLP} \\ BATFET \ off \end{array}$ | | 18 | 35 | u, t | | I <sub>OP</sub> | Total quiescent supply current | Charge disabled | | 1.25 | 2.1 | mA | | Supply voltage | | | | | | | | BOIN | DCIN UVLO rising threshold | | 3.8 | 4 | 4.2 | V | | DCIN <sub>UVLO</sub> | DCIN UVLO falling threshold | | 3.65 | 3.85 | 4.05 | | | ACOK compara | tor | | l | | | | | ACDIV <sub>TH</sub> | ACDIV rising voltage threshold to assert ACOK | | 1.87 | 2 | 2.13 | V | | ACDIV <sub>HYS</sub> | ACDIV voltage threshold hysteresis | | 5 | 20 | 35 | mV | | ACDIV <sub>SLP</sub> | ACDIV voltage threshold to enable internal bias | | 0.55 | 0.65 | 0.75 | V | | ACDIV <sub>OV</sub> | ACDIV rising threshold<br>voltage to determine an OV<br>condition that let ACOK go<br>low | | 2.55 | 2.625 | 2.70 | V | | ACDIV <sub>OV_H</sub> | ACDIV overvoltage hysteresis | | 35 | 65 | 95 | mV | | t <sub>R_ACOK</sub> | Rising edge deglitch time | AD bit cleared | 230 | 250 | 270 | ms | | Switching frequ | iency | | | | | | | ť | Buck converter switching | BSE bit cleared | 600 | 700 | 800 | kHz | | f <sub>SW</sub> | frequency | BSE bit set | 300 | 350 | 400 | | | Charging voltage | ge | | | | | | | V <sub>BATT_ERR</sub> | Charge voltage accuracy | | -1.53 | | 1.53 | % | | Charging curre | nt | | | | | | | | Charge current accuracy | $I_{CHG} = 0.128 \text{ A}$ $R_{SENSE} = 10 \text{ m}\Omega$ | -50 | | 50 | % | | I <sub>CHG_ERR</sub> | V <sub>SRN</sub> = 12 V | $I_{CHG} = 8.192 \text{ A}$ $R_{SENSE} = 10 \text{ m}\Omega$ | -3 | | +3 | | | Adapter curren | t sense amplifier | | | | | | | I <sub>ADP_G</sub> | Current sense amplifier gain | | 18 | 20 | 22 | | | I <sub>ADP_G_ERR</sub> | Current sense amplifier gain error | | -10 | | 10 | % | #### **Electrical characteristics** PM6613N Table 5. Electrical characteristics (continued) | Symbol | Parameters | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------|------|---------| | I <sub>ADP_SRC</sub> | I <sub>ACP</sub> + I <sub>ACN</sub> source current | V <sub>SENSE</sub> =<br>= ACP- ACN = 0 | 5 | 25 | 45 | mA | | Battery current | sense amplifier | | | | | | | I <sub>BATT_G</sub> | Current sense amplifier gain | | 18 | 20 | 22 | | | I <sub>BATT_G_ERR</sub> | Current sense amplifier gain error | | -10 | | +10 | % | | I <sub>BATT_SRC</sub> | I <sub>SRP</sub> + I <sub>SRN</sub> source current | $V_{SENSE} =$ = SRP- SRN = 0 | 5 | 25 | 50 | mA | | Light load comp | parator | | • | • | • | • | | I <sub>LL</sub> | Light load average current falling threshold for asynchronous working mode. Low-side MOSFET turned on only when I <sub>CHG</sub> > I <sub>LL</sub> | AM[1:0]=0x0 | 0.25 | 0.45 | 0.65 | А | | | | AM[1:0]=0x1 | 0.70 | 0.90 | 1.10 | | | | | AM[1:0]=0x2 | 1.10 | 1.30 | 1.50 | | | | | AM[1:0]=0x3 | 1.50 | 1.70 | 1.90 | | | I <sub>LL_hys</sub> | I <sub>LL</sub> hysteresis | | 255 | 280 | 305 | mA | | B2B | | | | | | | | I <sub>B2B</sub> | B2B pull-down current | ACOK = '0'<br>DCIN = 5 V | 1.9 | 2.3 | 2.7 | mA | | V <sub>B2B_LOW</sub> | B2B rising threshold to enable charge | | 4.4 | 5 | 5.6 | V | | $V_{B2B\_LOW\_H}$ | V <sub>B2B_LOW</sub> hysteresis | | 300 | 450 | 600 | mV | | I <sub>LIM</sub> comparator | • | | | | | | | V <sub>ILIM_FALL</sub> | I <sub>LIM</sub> falling threshold for disabling charge | | 55 | 75 | 95 | mV | | V <sub>ILIM_RISE</sub> | I <sub>LIM</sub> rising threshold for enabling charge | | 75 | 95 | 115 | | | Battery fault co | mparators | | | | | | | V <sub>BATT_LOW</sub> | Battery voltage rising threshold for enabling charge | | 2.45 | 2.55 | 2.65 | V | | V <sub>BATT_LOW_HIS</sub> | V <sub>BATT_LOW</sub> comparator<br>hysteresis | | 85 | 100 | 115 | mV | | | Battery overvoltage rising | Li- Ion | 120 | 170 | 220 | mV/cell | | V <sub>BATT_OV</sub> | threshold as difference<br>between SRN voltage and<br>CHRG_VOLT register value | LiFePO <sub>4</sub> | 100 | 140 | 170 | | PM6613N #### **Electrical characteristics** Table 5. Electrical characteristics (continued) | Symbol | Parameters | Test conditions | Min. | Тур. | Max. | Unit | |---------------------------|---------------------------------------------------------------------------------|-----------------------|------|------|------|---------| | V | V <sub>BATT OV</sub> overvoltage | Li- Ion | 75 | 90 | 105 | mV/cell | | V <sub>BATT_OV_H</sub> | hysteresis | LiFePO <sub>4</sub> | 55 | 75 | 85 | | | V <sub>BATT_OV_PD</sub> | Pull down current on SRN pin during overvoltage condition | | 3.5 | 5 | 6.5 | mA | | I <sub>BATT_OC</sub> | Battery overcurrent threshold as difference with CHRG_AMP register value | | 1.7 | 2 | 2.3 | А | | I <sub>BATT_OC_H</sub> | BATTERY overcurrent hysteresis | | 300 | 400 | 510 | mA | | Adapter fault co | omparators | | | | | | | I <sub>ADP_OC</sub> | Adapter input overcurrent threshold as difference with INPUT_AMP register value | | 1.7 | 2 | 2.3 | А | | I <sub>ADP_OC_H</sub> | I <sub>ADP_OC</sub> overcurrent hysteresis | | 250 | 400 | 550 | mA | | BATFET driver | | | | | | | | V <sub>BATFET_DRV</sub> | BATFET gate driving voltage respect to SRN pin | BATFET-SRN | 5.3 | 6 | 6.6 | V | | I <sub>BATFET_SHORT</sub> | BATFET driver max. current | BATFET shorted to SRN | 35 | 60 | 80 | mA | | ACDRV driver | | | | | | | | V <sub>ACDRV_DRV</sub> | RBFET gate driving voltage respect to B2B pin | ACDRV-B2B | 5.3 | 6 | 6.6 | V | | I <sub>ACDRV_</sub> SHORT | BATFET driver max. current | BATFET shorted to SRN | 35 | 55 | 75 | mA | **Electrical characteristics** PM6613N ### 3.2 Operating characteristics **Table 6. Typical operating characteristics** | | | | 1 | | | |--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Parameters | Test conditions | Min. | Тур. | Max. | Unit | | age | | | | | | | Cell voltage resolution | | | 4 | | mV/cell | | ent | | | | | | | Charge current control resolution | $R_{SENSE} = 10 \text{ m}\Omega$ | | 64 | | mA | | o battery comparator | | | | | | | Rising edge deglitch time | | | 3 | | ms | | nt sense amplifier | | | | | | | Current sense amplifier offset | Referred to input | | 1 | | mV | | t sense amplifier | | | | | | | Current sense amplifier offset | Referred to input | | 1 | | mV | | ction <sup>(1)</sup> | | | • | | | | Phase to GND threshold for high-side short detection when low-side is on | | | 200 | | mV | | Mask time on HS_SHORT from low-side turn-on time | | | 300 | | ns | | Ţ | | | | | | | BATFET driver output impedance | I <sub>BATFET</sub> < 20 μA | | 42 | | kΩ | | Charge pump off resistance | | | 5 | | k $\Omega$ | | | | | | | | | RBFET driver output impedance | I <sub>ACDRV</sub> < 20 μA | | 42 | | kΩ | | Charge pump off resistance | | | 5 | | kΩ | | | | | 1 | | | | High-side driver turn-on resistance | $V_{BTST}$ - $V_{PH}$ = 5 V | | 3.6 | | Ω | | High-side driver turn-off resistance | | | 0.7 | | | | | | | • | <u>. </u> | | | Low-side driver turn-on resistance | | | 3.2 | | Ω | | Low-side driver turn-off resistance | | | 0.8 | | | | | Cell voltage resolution ent Charge current control resolution b battery comparator Rising edge deglitch time nt sense amplifier Current sense amplifier offset t sense amplifier Current sense amplifier offset ction(1) Phase to GND threshold for high-side short detection when low-side is on Mask time on HS_SHORT from low-side turn-on time The sense amplifier RBFET driver output impedance Charge pump off resistance High-side driver turn-on resistance High-side driver turn-off resistance Low-side driver turn-off | Cell voltage resolution ent Charge current control resolution Depth Service of Servi | Cell voltage resolution ent Charge current control resolution Debattery comparator Rising edge deglitch time Int sense amplifier Current sense amplifier Current sense amplifier Current sense amplifier Current sense amplifier offset Referred to input Etion(1) Phase to GND threshold for high-side short detection when low-side is on Mask time on HS_SHORT from low-side turn-on time Charge pump off resistance RBFET driver output impedance RBFET driver output impedance Charge pump off resistance High-side driver turn-on resistance Low-side driver turn-on resistance Low-side driver turn-on resistance Low-side driver turn-on resistance Low-side driver turn-off | Age Age Cell voltage resolution 4 ent Charge current control resolution $R_{SENSE} = 10 \text{ m}\Omega$ 64 Description Agency comparator 64 Rising edge deglitch time 3 3 Int sense amplifier Referred to input 1 Current sense amplifier offset Referred to input 1 Current sense amplifier offset Referred to input 1 Stion (1) Phase to GND threshold for high-side short detection when low-side is on 200 Mask time on HS_SHORT from low-side turn-on time 300 BATFET driver output impedance IBATFET < 20 μA | Age Age Cell voltage resolution 4 ent Charge current control resolution RSENSE = $10 \text{ m}\Omega$ 64 Debattery comparator Rising edge deglitch time 3 Rising edge deglitch time 3 Interest sense amplifier Current sense amplifier offset Referred to input 1 Stion (1) Phase to GND threshold for high-side short detection when low-side is on 200 Mask time on HS_SHORT from low-side turn-on time 300 BATFET driver output impedance I <sub>BATFET</sub> < 20 μA | <sup>1.</sup> Guaranteed by design PM6613N **Electrical characteristics** ### 3.3 Recommended operating conditions (DCIN = 5 V, $T_j$ = 25 °C unless otherwise specified) Table 7. Recommended operating conditions | Symbol | Parameters | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---------------------------------------------------|----------------------------------|-------|------|--------|--------| | Supply vo | oltage | | | | | | | DCIN <sub>OP</sub> | DCIN input voltage operating range | | 4.5 | | 5.5 | V | | V <sub>ADP</sub> | Adapter maximum voltage | | | | 24 | V | | Charging | voltage | | | | | | | W | Call charge voltage | Li-lon | 4 | | 4.508 | V/cell | | V <sub>CELL</sub> | Cell charge voltage | LiFePO4 | 3.4 | | 3.908 | | | V <sub>BATT</sub> | Charge voltage range | | 6.8 | | 18.032 | V | | Charging | current | | | | | | | I <sub>CHG</sub> | Buck converter regulated charge current range | $R_{SENSE} = 10 \text{ m}\Omega$ | 0.128 | | 16.320 | А | | A2B adap | ter to battery comparator | | | | | | | A2B <sub>TH</sub> | A2B rising threshold | | 0.35 | 0.45 | 0.55 | V | | I <sub>A2B</sub> | A2B sink current from B2B pin | | 12 | 14 | 16 | μΑ | | Adapter c | urrent sense amplifier | | | | | | | I <sub>ADP_CM</sub> | IADP input common mode minimum voltage | | 2.5 | | | V | | Battery cu | urrent sense amplifier | | | | | | | I <sub>BATT_CM</sub> | IBATT input common mode minimum voltage | | 2.5 | | | V | | Thermal p | protection | | | | | | | T <sub>SHUT</sub> | Temperature rising threshold for disabling charge | | | 160 | | °C | | T <sub>SHUT_H</sub> | Thermal shutdown temperature hysteresis | | | 10 | | °C | #### **Electrical characteristics** PM6613N Table 8. SMBus communication timing values | Symbol | Parameters | Min. | Max. | Unit | |-----------------------|---------------------------------------------------------------------------------------------|------|------|------| | f <sub>SMB</sub> | SMBus operating frequency | 10 | 100 | kHz | | t <sub>(BUF)</sub> | Bus free time between stop and start condition | 4.7 | | μs | | t <sub>h(STA)</sub> | Hold time after (repeated) start condition. After this period, the first clock is generated | 4 | | | | t <sub>SU(STA)</sub> | Repeated start condition setup time | 4.7 | | | | t <sub>SU(STOP)</sub> | Stop condition setup time | 4 | | | | t <sub>H(DAT)</sub> | Data hold time | 300 | | ns | | t <sub>SU(DAT)</sub> | Data setup time | 250 | | | | t <sub>TIMEOUT</sub> | Detect clock high timeout | | 50 | μs | | t <sub>w(L)</sub> | Clock low period | 4.7 | | μs | | t <sub>w(H)</sub> | Clock high period | 4 | 50 | | | t <sub>r</sub> | Clock/data fall time | | 300 | ns | | t <sub>f</sub> | Clock/data rise time | | 1000 | | | t <sub>POR</sub> | Time in which a device must be operational after power-on reset | | 500 | ms | Table 9. Low power SMBus DC specifications | Symbol | Parameters | Min. | Max. | Unit | |---------------------|----------------------------------------------------|------|------|------| | V <sub>IL</sub> | Data, clock input low voltage | | 8.0 | V | | $V_{IH}$ | Data, clock input high voltage | 2.1 | VDD | | | V <sub>OL</sub> | Data, clock output low voltage | | 0.4 | | | I <sub>LEAK</sub> | Input leakage | | ±5 | μΑ | | I <sub>PULLUP</sub> | Current through pull-up resistor or current source | 100 | 350 | | | VDD | Nominal SMBus voltage | 2.7 | 5.5 | V | PM6613N Operating description ### 4 Operating description #### 4.1 SMBus communication interface The PM6613N communicates to the system MCU by the SMBus interface. The PM6613N is compliant with the system management Bus specification v2.0 (please refer to the official website www.smbus.org). The PM6613N uses a simplified command subset, with SMBus read-word and write-word protocols to communicate to the system MCU. The PM6613N works in slave mode only; according to the SMBus specifications, the slave address is set by using 7 bits, the value is 0b0010010 (0x12). The SMBus interface input pins SDA (data) and SCL (clock) have Schmitt-trigger inputs. Selecting pull-up resistors by 10 k for both of them to achieve rise times according to the SMBus specifications. A watchdog timer adjust function is provided within register 0x12. The charge is suspended if IC does not receive write charge voltage or write charge current command within the watchdog time period and watchdog timer is enabled. The charge is resumed after receiving write charge voltage or write charge current command when watchdog timer expires and charge suspends. Figure 3. SMBus communication timing waveforms #### Operating description PM6613N Figure 4. SMBus write-word and read-word protocols ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PM6613N Operating description The PM6613N supports 7 SMBus commands as listed in *Table 10*. 5 4 <u>ლ</u> 7 Address Register 2 ဖ 2 0 WD[1:0] 4M[1:0] ARED BED EFA P CHRG\_OPT 占 Ш $\overline{\mathbf{s}}$ 뚱 80 $\overline{\circ}$ 0x12 R 0 1 0 0 0 0 0 0 0 0 1 Reset value 1 1 O 1 RBSS AOC BOV AUV HBR 00 9 9 **STATUS** 0x13 Reserved 0 0 Reset value 0 0 0 0 0 0 0 0 0 CHRG\_AMP AMP[13:6] 0x14 Res Reserved Reset value 0 0 0 0 0 0 CHRG\_VOLT VOLT[14:1] 0x15 R Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 INPUT\_AMP AMP[13:7] 0x3F Res Reserved 0 Reset value 1 0 0 0 0 0 MAN ID Manufacturer ID Table 10. SMBus command summary ### 4.2 ACFET/RBFET and BATFET system power selectors 0 0 0 0 0 0 0 0 0 0 Device ID 0 0 0 0 1 0 0 0 0 0 0 0 0 0 The PM6613N integrates 2 charge pumps to drive nMOS selectors for ACFET/RBFET and BATFET. At reset condition, the PM6613N internal circuitry controls the RBFET turn-on, to avoid inrush current flowing from ADP (adapter) to SYS (system). The BATFET selector connects (disconnects) the battery from the system. At reset condition, the BATFET selector is controlled by the internal circuitry. During a charging process, if the adapter is disconnected, the PM6613N stops any charge operation and remains in sleep mode: if the BSE is set, the PM6613N connects the battery to the system. If the SOVR bit is set, the internal circuitry can be disabled: the nMOS selectors can be manually controlled changing the ARED and BED bits respectively. 0xFE 0xFF Reset value DEV\_ID Reset value 0 0 0 0 0 0 Operating description PM6613N ### 4.3 Adapter detection The ACOK pin is an open-drain output signal to inform the system MCU that a valid ADAPTER voltage has been detected by the ACDIV pin (ACDIV > 2 V). At reset condition, for safety reason, a delay is applied to the internal circuitry, in order to avoid false adapter insertions. An adapter insertion is detected when the voltage across ACDIV pin is higher than 2.0 V. A voltage divider assures that when the adapter is inserted a voltage between 2.0 V and 2.65 V is applied to ACDIV pin. The internal circuitry checks for 250 ms that this voltage is stable, and in this case enables the ACFET/RBFET selectors and the ACOK pin. The delay can be removed clearing the AD bit on the CHRG\_OPT register. ### 4.4 Internal charge pumps Some charge pumps allow the PM6613N to supply the internal drivers necessary to drive the ACFET/RBFET selectors, the BATFET selector and the high-side MOSFET. The ACFET/RBFET selectors are switched off/on by the ACDRV pin. An internal charge pump is used to lift the ACDRV voltage using the voltage coming from the B2B pin. The high-side MOSFET is controlled by the HIGH pin. A charge pump receives the base voltage from the PH pin, allowing the HIGH pin to be toggled. The BATFET selector is driven by the BATFET pin whose voltage is bootstrapped using the BTST pin. ### 4.5 Switching frequency selection and EMI adjustments The PM6613N buck converter switching frequency can be chosen, by setting bit 9 and bit 10 of the CHRG\_OPT register. The choice depends on the compromise among efficiency, inductance, output capacitor, and the PCB area. An additional offset can be applied to the nominal frequency to avoid EMI issues, setting the bit EE of the CHRG\_OPT register. The offset can be set to ±15% changing the bit EFA of the CHRG\_OPT register. ### 4.6 Charge settings The PM6613N uses 3 SMBus registers and the ILIM pin to control the charging process. The CHRG\_VOLT register sets the voltage limit, ranging from a minimum value of 6800 mV to a maximum value of 18032 mV, with 2 mV step resolution. Not all the values are allowed within the above range (see *Table 11* and *Table 12*). Any attempt to write a non valid value causes the internal circuitry to clear the register and stop any charging process. The CHRG\_AMP register sets the current limit drained to the battery. The allowable value ranges from a minimum of 128 mA to a maximum of 16320 mA. Setting a value outside this range causes the PM6613N to clear the register and terminate any charging process. The charging current is sensed measuring the differential voltage between SRP and SRN pins where a small resistor value is connected to. A suggested value is 10 m $\Omega$ , and not more than 20 m $\Omega$ . Greater values increase the sensitivity of the current sensing and the regulation accuracy, but cause a higher power loss and could lead to an overcurrent protection latching. The charge current limit can be set forcing a voltage through the ILIM pin too. The PM6613N automatically sets the maximum charge current by choosing the minimum value between the $I_{LIM}$ voltage value and the CHRG\_AMP register. The relationship between the $I_{LIM}$ voltage and the input current limit is reported below: # Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PM6613N Operating description #### **Equation 1** $$V_{ILIM} = R_{SB} \cdot I_{CHG} \cdot 10 + 0.03125$$ whereas $R_{SB}$ is the sensing resistor connected between the SRP and SRN pins and $I_{CHG}$ is the charge current limit. The charge is disabled when the $I_{LIM}$ voltage decreases below 70 mV and re-enabled when increases over 90 mV. The $I_{LIM}$ control can be disabled by pulling it to 5 V. Table 11. Valid battery charge voltage ranges for Li-lon battery cells | Cells | CHRG | _VOLT | Charge voltage [mV] | | | | |-------|--------|--------|---------------------|-------|--|--| | Cens | Min. | Max. | Min. | Max. | | | | 2 | 0x1F40 | 0x2338 | 8000 | 9016 | | | | 3 | 0x2EE0 | 0x34D4 | 12000 | 13524 | | | | 4 | 0x3E80 | 0x4670 | 16000 | 18032 | | | Table 12. Valid battery charge voltage ranges for LiFePO₄ battery cells | Cells | CHRG | _VOLT | Charge voltage [mV] | | | | |-------|--------|--------|---------------------|-------|--|--| | Cens | Min. | Max. | Min. | Max. | | | | 2 | 0x1A90 | 0x1E88 | 6800 | 7816 | | | | 3 | 0x27D8 | 0x2DCC | 10200 | 11724 | | | | 4 | 0x3520 | 0x3D10 | 13600 | 15632 | | | ### 4.7 Adapter constant power function The adapter constant power function manages the amount of input current flowing to the system and to the battery during a charging process. If the input current exceeds the chosen input current limit, the PM6613N keeps the input current at the limit decreasing the charging current. In this manner the system load has the priority. As the system load current increases, the charging current linearly decreases down to 0 A. The input current is sensed measuring the differential voltage between ACP and ACN pins where a small resistor is connected. A suggested value is 10 m $\Omega$ , and eventually not more than 20 m $\Omega$ . Greater values increase the sensitivity and a finer current limit management, but cause a higher power loss and could lead to an overcurrent protection due to a higher voltage ripple. The INPUT\_AMP register sets the input current limit through SMBus. Valid ranges are between 128 mA and 16256 mA. Any attempt to write a value outside this range causes the register to be cleared and any charging process to be stopped. Operating description PM6613N #### 4.8 Input current limit protection An input current limit protection is integrated into the PM6613N. When the input current, sensed by ACP and ACN pins, reaches 2 A more than the value stored on INPUT\_AMP, the internal circuit stops any charging process and sets the AOC bit of the STATUS register. When the fault condition is not more present for 2.5 ms, the charging process is recovered by a soft-start. #### 4.9 Thermal shutdown A thermal protection feature is integrated in the PM6613N. If the junction temperature (T<sub>J</sub>) exceeds 165 °C, the internal circuitry stops any charging process and the bit TS of STATUS register is set. When T<sub>J</sub> falls below 145 °C, the charger exits from the fault condition and after 2.5 ms the charging process resumes by a soft-start. #### 4.10 **Battery protection** Several protection features disable the charging process if the battery condition falls in one of the following conditions: - battery undervoltage - battery overvoltage - battery overcurrent A voltage fault is detected sensing the battery voltage on SRN pin. A battery undervoltage condition occurs when the SRN voltage is below 2.5 V: the LB bit of the STATUS register is set. A battery overvoltage occurs when SRN voltage exceeds the charging voltage according to the Table 13: **Battery type** Overvoltage threshold Li-lon CHRG\_VOLT[mV]+170 mV\* cells Li-FePO<sub>4</sub> CHRG\_VOLT[mV]+144 mV\* cells Table 13. Battery overvoltage detection ranges Battery current is sensed by the current flowing through a small resistor connected between SRP and SRN pins. An overcurrent condition occurs when the battery average current exceeds the value set in the CHRG\_AMP register by 2 A: the BOC bit of the STATUS register is set. #### 4.11 Adapter insertion When the ACDIV pin has a voltage under the ACDIV<sub>SLP</sub> (see *Table 14*), the PM6613N is in sleep mode. If BSE of CHRG OPT register is set, the BATFET selector is kept closed, allowing the battery to supply the system. When the adapter is inserted, the ACDIV pin voltage rises, and when it reaches a 0.65 V threshold, the PM6613N goes out of the sleep mode. When the ACDIV pin reaches 2 V threshold, an internal comparator monitors this condition for a programmable deglitch time, set to 250 ms at power-on reset. If the condition is stable after this time, the ACOK pin goes high. This time can be reduced setting the AD bit PM6613N Operating description of CHRG\_OPT register. When ACOK is high, the ACFET selector has to be switched on, in order to supply the B2B pin. This pin is used to provide the offset for the charge pump that supplies the ACFET/RBFET selectors. Once B2B reaches the 2.5 V threshold, the BATFET selector is switched off and the battery is disconnected from the system: in this case the current flows to the system through the body diode of the selector. When the B2B pin crosses the battery voltage (sensed by SRN pin) by 255 mV, the RBFET is switched ON. From now on the system is supplied by the adapter. The described sequence is summarized in the below table: Condition **Action** Adapter insertion ACDIV voltage rises PM6613N goes out of sleep mode ACDIV > 0.65 V B2B pin forces a low voltage ACOK pin goes high after 250 ms ACDIV > 2 V B2B pin stops forcing voltage ACFET is turned on B2B voltage rises B2B > 2.5 V BATFET is off B2B > SRN+225 mV ACFET/RBFET is on Table 14. Adapter insertion sequence ### 4.12 Adapter removal When the adapter is unplugged, a disconnection sequence occurs, bringing the charger into a sleep mode. When the ACDIV pin goes below 1.95 V, the ACOK pin goes immediately low: there's no deglitch time in this case. Any charging process is interrupted and the B2B pin is internally discharged. The B2B pin is used to sense the system voltage through the ACFET/RBFET selectors. When the B2B pin goes below the value of the battery plus 225 mV, the ACFET/RBFET selectors are opened if SOVR bit of CHRG\_OPT is set, and the BATFET selector is closed if the BSE bit of CHRG\_OPT is set, allowing the battery to supply the system. As the system voltage is much closer to the battery voltage, any inrush current caused by system capacitors is avoided. When the ACDIV voltage goes below 0.6 V the PM6613N is in sleep mode. The sequence is summarized in *Table 15* Condition Action Adapter unplugged ACDIV voltage decreases ACOK goes low ACOK goes low B2B pin forces a low voltage B2B pin forces a low voltage Internal circuitry disables any charging process B2B < SRN+ 225 mV</td> ACFET/RBFET selectors opened BATFET selector closed ACDIV < 0.6 V</td> The PM6613N is in sleep mode Table 15. Adapter removal sequence The PM6613N registers PM6613N # 5 The PM6613N registers ### 5.1 Charge option register (CHRG\_OPT) Address: 0x12 Reset value: 0x7101 #### Table 16. CHRG\_OPT 0x12 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|-------|-----|----|-----|----|-----|-------|----|------|-----|------|----|------|----| | AD | WD | [1:0] | BSE | PF | EFA | EE | AM[ | [1:0] | IS | SOVR | BED | ARED | CF | Res | CI | | rw 1762 | rw | - Bit 15 AD: ACOK deglitch - set by software to enable a delay for the adapter insertion - 0: the PM6613N waits for 250 ms for adapter voltage detection - 1: the PM6613N waits for a time < 50 μs for adapter voltage detection</li> - Bit [14:13] WD: watchdog - set by software to enable and select the timeout of the PM6613N watchdog - 00: watchdog disabled - 01: enabled, timeout at 44 sec. - 10: enabled, timeout at 88 sec. - 11: enabled, timeout at 175 sec. - Bit 12 BSE: BATFET sleep enabled - set by software to control the BATFET selector behavior, when the PM6613N is in sleep mode - 0: BATFET disabled during sleep mode - 1: BATFET enabled during sleep mode - Bit 11 PF: PWM frequency - set by software to select the working PWM frequency of the buck converter - 0: PWM frequency set to 700 kHz - 1: PWM frequency set to 350 kHz - Bit 10 EFA: EMI frequency adjustments - set by software in order to increase or decrease by 15% the PWM frequency of the buck converter when EE bit is enabled - 0: PWM frequency decreased by 15% - 1: PWM frequency increased by 15% ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### PM6613N #### The PM6613N registers - Bit 9 EE: EMI enabled - set by software to enable the EMI reduction function - 0: EMI disabled - 1: EMI enabled - Bit 8:7 AM: asynchronous mode - set by software to choose the average charging current limit for passive recirculation condition - 00: 375 mA - 01: 750 mA - 10: 1125 mA - 11: 1500 mA - Bit 6 IS: IOUT selection - set by software to choose which current has to be monitored through the IOUT pin - 0: adapter current - 1: battery current - Bit 5 SOVR: selector override - set by software to enable the external control of the RBFET/BATFET selectors. Once set, RBFET/BATFET can be controlled by bits 3 and 4 - 0: override enabled - 1: override disabled - Bit 4 BED: BATFET external driver - set by software to control the external selector BATFET. OVR bit has to be set, in order to control BATFET - 0: open BATFET - 1: close BATFET - Bit 3 ARED: ACFET/RBFET external driver - set by software to control the external selectors ACFET/RBFET. OVR bit has to be set, in order to control ACFET/RBFET - 0: open ACFET/RBFET selectors - 1: close ACFET/RBFET selectors - Bit 2 CF: clear fault - set by software to clear the STATUS register. The bit is cleared once the process has been executed - 0: STATUS register unchanged - 1: clear STATUS register - Bit 1 reserved, read as 0 - Bit 0 CI: charge inhibited - set by software to inhibit the charging process - 0: charge enabled - 1: charge inhibited The PM6613N registers PM6613N ### 5.2 STATUS register Address: 0x13 Reset value: 0x0000 Table 17. Status 0x13 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|----------|----|----|----|------|------|-----|-----|-----|-----|----|-----|-----|----|---| | | Reserved | | | TS | HBRO | RBSS | AOC | IOC | BOV | BOC | LB | AOV | AUV | HS | | | Reserved | | | r | r | r | r | r | r | r | r | r | r | r | | | - Bit 15:11 reserved, read as 0 - Bit 10 TS: thermal shutdown - set by hardware to indicate that thermal shutdown condition occurred on the PM6613N. Thermal shutdown occurs when the junction temperature (T<sub>j</sub>) is higher than 165 °C. It's cleared by hardware when T<sub>i</sub> drops below 145 °C. - Bit 9 HBRO: HS BTST RBFET open - Bit 8 RBSS: RBFET selector short - set by hardware to indicate a short on RBFET between drain and source - 0: no short detected - 1: short detected - Bit 7 AOC: adapter overcurrent - set by hardware to indicate that the adapter current is 2 A higher than the value - Bit 6 OC: I<sub>LIM</sub> overcurrent - set by hardware when input current crosses the input limit set by INPUT\_AMP register and ILIM pin - 0: no input overcurrent detected - 1: input overcurrent detected - Bit 5 BOV: battery overvoltage - set by hardware when the PM6613N detects a battery voltage (SRN pin) higher than the value reported on *Table 13* - 0: no battery overvoltage detected - 1: battery overvoltage detected - Bit 4 BOC: battery overcurrent - set by hardware when the PM6613N detects a current flowing through the battery, 2 A higher than the value set on CHRG\_AMP register - 0: no battery overcurrent detected - 1: battery overcurrent detected - Bit 3 LB: low battery - set by hardware when the PM6613N detects a battery voltage (SRN pin) lower than 2.5 V - 0: no low battery condition detected - 1: low battery condition detected ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### PM6613N The PM6613N registers - Bit 2 AOV: ACDIV overvoltage - set by hardware when the PM6613N detects an ACDIV pin voltage higher than 2.625 V - 0: no ACDIV overvoltage detected - 1: ACDIV overvoltage detected - Bit 1 AUV: ACDIV undervoltage - set by hardware when the PM6613N detects an ACDIV pin voltage lower than 2 V - 0: no ACDIV undervoltage detected - 1: ACDIV undervoltage detected - Bit 0 HS: high-side short - set by hardware when a short condition is detected between drain and source of the high-side MOS - 0: no short detected on high-side MOS - 1: short detected on high-side MOS ### 5.3 Charge current register (CHRG\_AMP) Address: 0x14 Reset value: 0x0000 Table 18. CHRG\_AMP 0x14 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|--------|----|----|----|-----|---------|----|----|----------|---|---|-------|------|---|---| | Rese | erved | | | | AMF | P[13:6] | | | Reserved | | | | | | | | 11030 | 51 VGU | rw | | 11636 | iveu | | | - Bits 13:6 AMP[13:6]: charge current configuration bits - these bits are written by software and fix the amount of current to be delivered when battery is charging. Values are in mA. The range goes from 64 mA when AMP[13:6] = 0x0040 to 16320 mA when AMP[13:6] = 0x3FC0. Minimum step is 64 mA. #### The PM6613N registers PM6613N ### 5.4 Charge voltage register (CHRG\_VOLT) Address: 0x15 Reset value: 0x0000 Table 19. CHRG\_VOLT 0x15 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------------|----|----|----|----|----|----|----|----|-----|----|----|----|----|------| | Res | VOLT[14:1] | | | | | | | | | Res | | | | | | | 1763 | rw 1163 | - Bits 14:1 VOLT[14:1]: charge voltage configuration bits - these bits are written by software and fix the voltage to apply to the battery when it is charging. Values are in mV and set according to the following formula: #### **Equation 2** $$V_{BAT} = (2 \cdot 2^{VOLT[14 \div 1]}) mV$$ Not all the values are allowed. See Table 11 and Table 12 for allowable ranges. ### 5.5 Input current register (INPUT\_AMP) Address: 0x3F Reset value: 0x2000 Table 20. INPUT\_AMP 0x3F | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|----|----|----|----|----|----|----|----------------|---|---|---|---|---|---| | Dana | AMP[13:7] | | | | | | | | Decembed | | | | | | | | Rese | ervea | rw Reserved<br>rw | | | | | | | - Bits 13:7 AMP[13:7]: charge current configuration bits - these bits are written by software and fix the current limit delivered by the adapter. The range goes from 128 mA when AMP[13:6] = 0x0080 to 16256 mA when AMP[13:6] = 0x3F80. Minimum step is 128 mA. PM6613N Package mechanical data # 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark. Table 21. VFQFPN 3x3x1.0 20 L pitch 0.4 package dimensions | Ref. | Min. | Тур. | Max. | |------|------|------|------| | А | 0.8 | 0.90 | 1.00 | | A1 | | 0.02 | 0.05 | | A2 | | 0.65 | 1.00 | | A3 | | 0.20 | | | b | 0.15 | 0.20 | 0.25 | | D | 2.85 | 3.00 | 3.15 | | D1 | | 1.60 | | | D2 | 1.50 | 1.60 | 1.70 | | E | 2.85 | 3.00 | 3.15 | | E1 | | 1.60 | | | E2 | 1.50 | 1.60 | 1.70 | | е | 0.35 | 0.40 | 0.45 | | L | 0.30 | 0.40 | 0.50 | | ddd | | | 0.07 | #### Package mechanical data PM6613N 8212726\_REV\_A Figure 5. VFQFPN 3x3x1.0 20 L pitch 0.4 mechanical data drawings **SEATING PLANE** A3 D PIN #1 ID D1 R = 0.20е 16 20 15 E2 11 5 10 6 b D2 BOTTOM VIEW PM6613N Revision history # 7 Revision history **Table 22. Document revision history** | Date | Revision | Changes | |-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 23-Jul-2013 | 1 | Initial release. | | 25-Sep-2013 | 2 | Updated, in <i>Table 5: Electrical characteristics</i> , the following parameters: I <sub>OP</sub> , ACDIV <sub>TH</sub> , V <sub>BATT_ERR</sub> , I <sub>CHG_ERR</sub> , I <sub>ADP_G_ERR</sub> , I <sub>BATT_G_ERR</sub> and I <sub>BATT_SRC</sub> . Datasheet status promoted from preliminary to production data. | | 27-Nov-2013 | 3 | Changed the value of charge voltage accuracy from 0.5% to 1.53% in the features. Updated light load comparator, battery fault comparators, t <sub>R_ACOK</sub> and f <sub>SW</sub> test conditions in <i>Table 5: Electrical characteristics</i> . Updated I <sub>BATT_OC</sub> and I <sub>ADP_OC</sub> parameters in <i>Table 5: Electrical characteristics</i> . Updated <i>Table 7: Recommended operating conditions</i> . Changed the title of <i>Table 16</i> , <i>Table 17</i> , <i>Table 18</i> , <i>Table 19</i> and <i>Table 20</i> . | # **Distributor of STMicroelectronics: Excellent Integrated System Limited**Datasheet of PM6613NTR - IC BATTERY CHARGER HIEFF 20QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PM6613N #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com