

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Diodes Incorporated</u> <u>AP1682MTR-G1</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

General Description

The AP1682 is a high performance AC/DC universal input Primary Side Regulation Power Factor Controller for LED driver applications. The device uses Pulse Frequency Modulation (PFM) technology to regulate output current while achieving high power factor and low THD.

The AP1682 provides accurate constant current (CC) regulation while removing the opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability. The AP1682 achieves excellent regulation and high efficiency, yet meets the requirement of IEC61000-3-2 harmonic standard.

The AP1682 features low start-up current, low operation current and high efficiency. It also has rich protection features including over voltage, short circuit, over current, over temperature protection etc.

The AP1682 is available in SOIC-8 package.

Features

- Primary Side Control for Output Current Regulation Without Opto-coupler and Secondary CV/CC Control Circuitry
- Low Start-up Current
- High Power Factor and Low THD for Universal Input Range
- Tight CC Regulation Performance for Universal Input Mains Voltage Range
- Eliminates Control Loop Compensation Circuitry
- Built-in Acceleration Start
- Open-load and Reload Detection
- Over Voltage and Short Circuit Protection
- Over Temperature Protection
- Over Current Protection
- Cost Effective Total PFC LED Driver Solution

Applications

 Single Stage Power Factor Correction Power Supply for LED Lighting

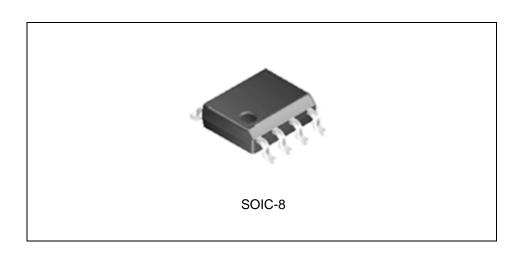


Figure 1. Package Type of AP1682

Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Pin Configuration

M Package (SOIC-8)

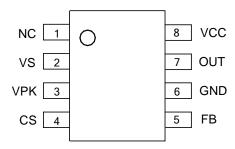


Figure 2. Pin Configuration of AP1682 (Top View)

Pin Description

Pin Number	Pin Name	Function		
1	NC	No connection		
2	VS	The rectified input voltage sensing pin. The pin is detecting the instantaneous rectified sine waveform of input voltage		
3	VPK	The rectified input voltage peak value sensing pin. The pin is detecting the rectified sine waveform peak value of input voltage		
4	CS	Primary current sensing		
5	FB	This pin captures the feedback voltage from the auxiliary winding. FB voltage is used to control no load output voltage and determine acceleration stop point at start-up phase		
6	GND	Ground. Current return for gate driver and control circuits of the IC		
7	OUT	Gate driver output		
8	VCC	Supply voltage of gate driver and control circuits of the IC		

Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Functional Block Diagram

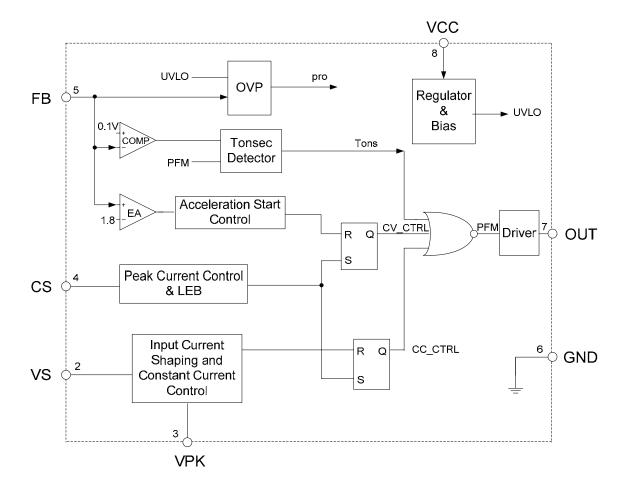
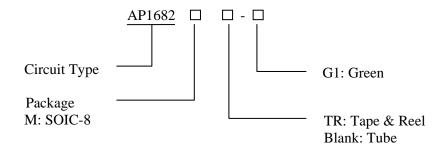


Figure 3. Functional Block Diagram of AP1682

Distributor of Diodes Incorporated: Excellent Integrated System LimitedDatasheet of AP1682MTR-G1 - IC LED Driver AC DC Offline Switcher 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOIC-8	-40 to 105°C	AP1682M-G1	1682M-G1	Tube	
		AP1682MTR-G1	1682M-G1	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Power Supply Voltage	V_{CC}	-0.3 to 30	V	
Driver Output Current	I_{OUT}	300	mA	
Voltage at VS, VPK, CS	V_{VS}, V_{PK}, V_{CS}	-0.3 to 7	V	
FB Input Voltage	V_{FB}	-40 to 10	V	
Operating Junction Temperature	T_{J}	150	°C	
Storage Temperature	T_{STG}	-65 to 150	°C	
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	300	°C	
Power Dissipation at T _A =50°C	P_D	0.65	W	
Thermal Resistance (Junction-to-Ambient)	θ_{JA}	190	°C/W	
ESD (Machine Model)		200	V	
ESD (Human Body Model)		3000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	
Power Supply Voltage	V_{CC}	9	21	V	
Ambient Temperature	T_{A}	-40	105	°C	

Data Sheet

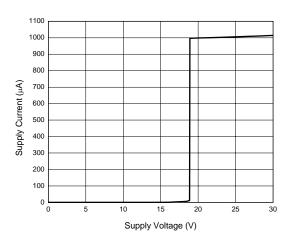
Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Electrical Characteristics

 V_{CC} =15V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
UVLO Section							
Start-up Threshold	V _{TH} (ST)		18	19	20		
Minimal Operating Voltage	V _{OPR} (Min)	After turn on	7	8	9	V	
VCC OVP Voltage	V_{CC_OVP}		28	32	36		
Standby Current Section							
Start-up Current	I_{ST}	V _{CC} =V _{TH} (ST)-0.5V, Before start up			20	μA	
Maximum Operating Current	I _{CC} (Max)	$V_{VS}=V_{PK}=3V$		1000	1300	μΑ	
Drive Output Section							
Output High Level Voltage	V_{OH}	I _{GD-SOURCE} =20mA V _{CC} =12V	10			V	
Output Low Level Voltage	V _{OL}	I _{GD-SINK} =20mA V _{CC} =12V			1	V	
Output Voltage Rise Time	t_R	$C_L=1nF$	100	140	190	ns	
Output Voltage Fall Time	$t_{ m F}$	$C_L=1nF$	30	60	90	ns	
Output Clamp Voltage	V _{O-CLAMP}	I _{GD-SOURCE} =5mA V _{CC} =20V	12	13.5	15	V	
UVLO Saturation Voltage	$V_{ m UVLO}$	V_{CC} =0 to $V_{\text{CC-ON}}$ I_{SINK} =10mA			1.1	V	
VS Input Section							
Maximum Ratio	V_{VS}/V_{PK} (Max)	$V_{VS}=V_{PK}=3V$	0.8	1	1.2	V	
Minimum Ratio	V _{VS} /V _{PK} (Min)	$V_{VS}=0V, V_{PK}=3V$			0.2	V	
Current Sense Section							
Minimum On Time	t _{ON} (Min)		500	750	1000	ns	
Short Circuit Protection Voltage	V_{SOCP}		3	4		V	
Feedback Input Section							
FB Pin Input Leakage Current	$ m I_{FB}$	V _{FB} =4V		2	8	μΑ	
Acceleration Start Threshold	V _{FB} (ACC)		1.4	1.8	2.2	V	
CV Threshold	$V_{FB}(CV)$		3.2	4.2	5.2	V	
Over Voltage Protection	V _{FB} (OVP)		4.5	6	7.5	V	
Over Temperature Protecti	on Section						
Shutdown Temperature				140		°C	
Temperature Hysteresis				20		°C	



Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Typical Performance Characteristics

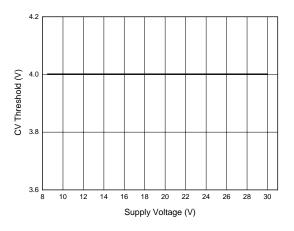
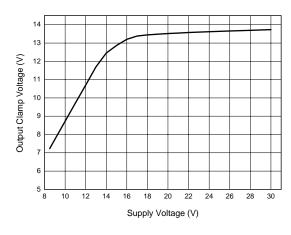



Figure 4. Supply Current vs. Supply Voltage

Figure 5. CV Threshold Vs. Supply Voltage

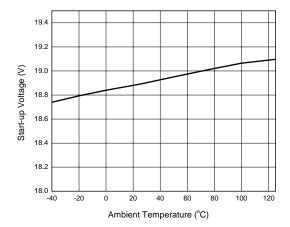
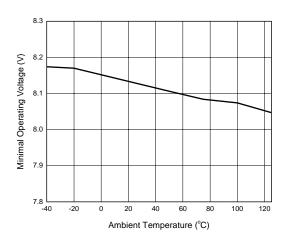


Figure 6. Output Clamp Voltage vs. Supply Voltage

Figure 7. Start-up Voltage vs. Ambient Temperature



Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Typical Performance Characteristics (Continued)

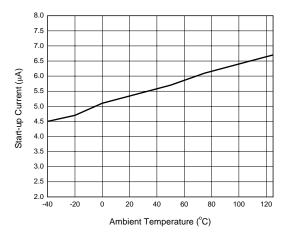


Figure 8. Minimal Operating Voltage vs. Ambient Temperature

Figure 9. Start-up Current vs. Ambient Temperature

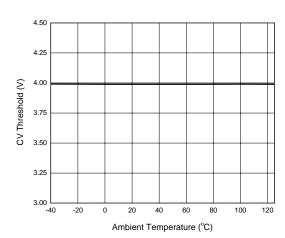


Figure 10. Operating Current vs. Ambient Temperature

Figure 11. CV Threshold Vs. Ambient Temperature

Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Typical Performance Characteristics (Continued)

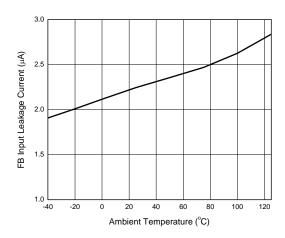


Figure 12. FB Input Leakage Current vs.
Ambient Temperature

Typical Application

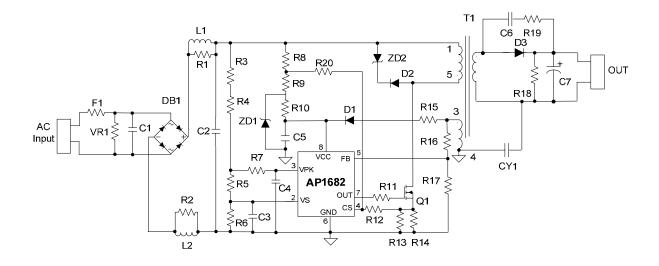
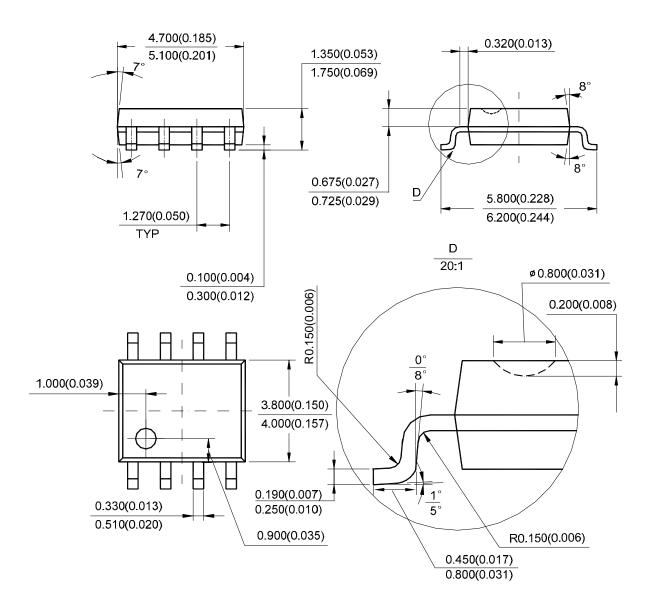


Figure 13. Typical Application of AP1682


Data Sheet

Single Stage Primary Side Regulation PFC Controller For LED Driver

AP1682

Mechanical Dimensions

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Distributor of Diodes Incorporated: Excellent Integrated System Limited Datasheet of AP1682MTR-G1 - IC LED Driver AC DC Offline Switcher 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788