

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74VHC541MTC

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74VHC541MTC - IC BUFF/DVR TRI-ST 8BIT 20TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

FAIRCHIL

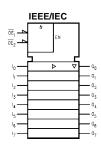
74VHC541 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

Features

- E Low power dissipation: $I_{CC} = 4 \ \mu A \ (max)$ at $T_A = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.9V (typ)
- Pin and function compatible with 74HC541

Ordering Code:


FAIRCI SEMICOND 74VHC5 Octal BL	uctor® 41	Driver with	August 1993 Revised May 2005 3-STATE Outputs
fabricated with si the high-speed Schottky TTL whi pation. The VHC541 is a employed as me and bus oriented This device is sin viding flow-throug from outputs). Th especially useful	an advanced high-s icon gate CMOS tec operation similar to e maintaining the CM an octal buffer/line d mory and address of transmitter/receivers nilar in function to the h architecture (inpu is pinout arrangeme	e VHC244 while pro- its on opposite side nt makes this device for microprocessors,	An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply volt- age. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This cir- cuit prevents device destruction due to mismatched supply and input voltages. Features • High Speed: $t_{PD} = 3.5 \text{ ns}$ (typ) at $V_{CC} = 5V$ • Low power dissipation: $I_{CC} = 4 \ \mu A \ (max)$ at $T_A = 25^{\circ}C$ • High noise immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC} \ (min)$ • Power down protection is provided on all inputs • Low noise: $V_{OLP} = 0.9V \ (typ)$ • Pin and function compatible with 74HC541
Ordering C	Ode: Package Number		Package Description
74VHC541M	M20B	20-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC541SJ	M20D	Pb-Free 20-Lead Sma	Il Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC541MTC	MTC20	20-Lead Thin Shrink S	mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC541N	N20A	20-Lead Plastic Dual-	n-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

	\cup	20 V
2	ří –	19 VCC
0 3		18 0E2
4		17 00
¹ 2 5		16 0 ₂
¹ 3 6		15 .
I ₄		14 03
- 8		13 0-
6 9		12 05
GND 10		11 0-
0110		- 07

Logic Symbol

Pin Descriptions

GI

Pin Names	Descriptions
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
l ₀ - l ₇	Inputs
0 ₀ - 0 ₇	3-STATE Outputs

Truth Table

		Outputs		
	OE ₁	OE ₂	I	
	L	L	Н	Н
	Н	Х	Х	Z
	Х	н	Х	Z
	L	L	L	L
H = HIGH Volt		X = Immate Z = High In		

DS011639 © 2005 Fairchild Semiconductor Corporation

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74VHC541MTC - IC BUFF/DVR TRI-ST 8BIT 20TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to V _{CC} + 0.5V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating

Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 3.3V \pm 0.3V$	0 ~ 100 ns/V
$V_{CC} = 5.0V \pm 0.5V$	0 ~ 20 ns/V
Note 1: Absolute Maximum Ratings are values	

The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float

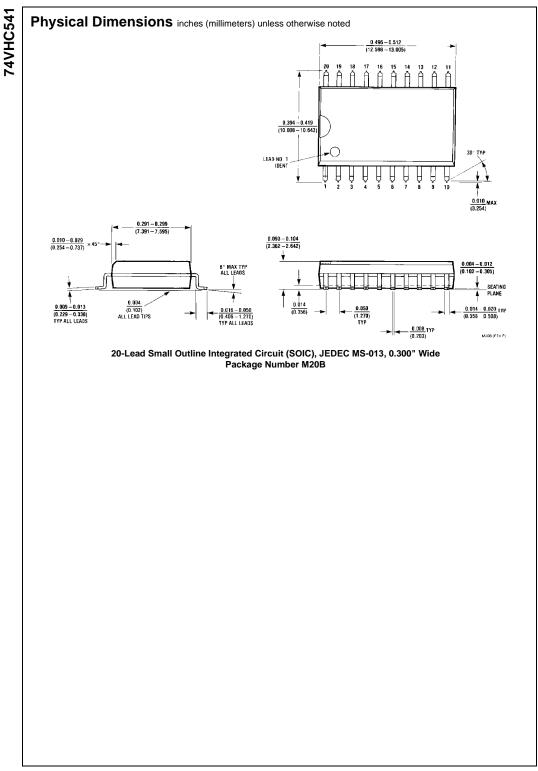
DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = 25°C		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$		Units	Conditions		
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	Contantions	
V _{IH}	HIGH Level Input	2.0	1.50			1.50		v		
	Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input	2.0			0.50		0.50	v		
	Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	I _{OH} = -50 μA
	Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		I _{OH} = -4 mA
		4.5	3.94			3.80		v		I _{OH} = -8 mA
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1		V _{IN} = V _{IH}	I _{OL} = 50 μA
	Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	v		I _{OL} = 4 mA
		4.5			0.36		0.44	v		I _{OL} = 8 mA
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	٨	$V_{IN} = V_{IH}$ or	V _{IL}
	Off-State Current							μA	$V_{OUT} = V_{CC}$	or GND
I _{IN}	Input Leakage Current	0 - 5.5			±0.1	1	±1.0	μA	V _{IN} = 5.5V o	r GND
Icc	Quiescent Supply Current	5.5			4.0		40.0	μA	V _{IN} = V _{CC} or	GND

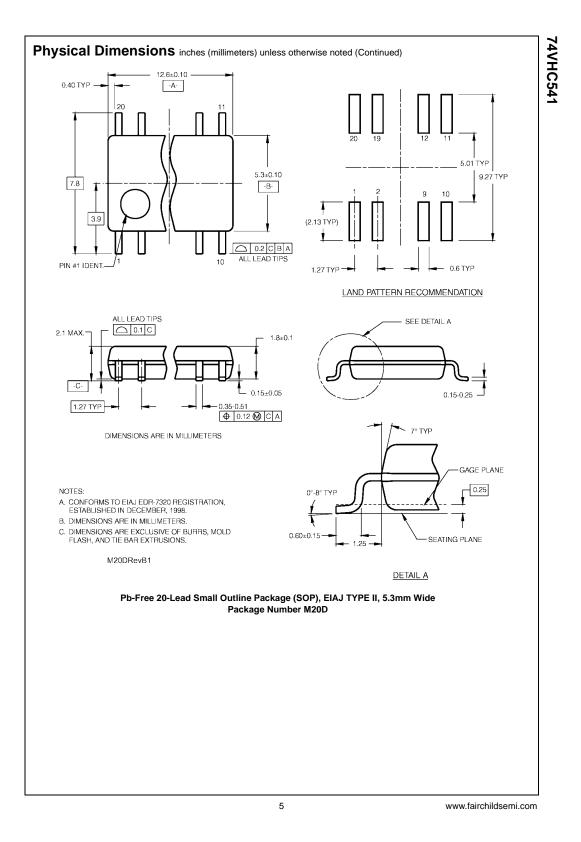
Noise Characteristics

Symbol	Parameter	V _{cc}	T _A =	25°C	Units	Conditions	
	i alameter	(V)	Тур	Limits	onita		
V _{OLP}	Quiet Output Maximum Dynamic	5.0	0.9	1.2	V	C _L = 50 pF	
(Note 3)	V _{OL}						
V _{OLV}	Quiet Output Minimum Dynamic	5.0	-0.8	-1.0	V	C _L = 50 pF	
(Note 3)	V _{OL}						
V _{IHD}	Minimum HIGH Level Dynamic	5.0		3.5	V	C _L = 50 pF	
(Note 3)	Input Voltage						
V _{ILD}	Maximum HIGH Level Dynamic	5.0		1.5	V	C _L = 50 pF	
(Note 3)	Input Voltage						

Note 3: Parameter guaranteed by design.



Symbol	Parameter	v _{cc}	T _A = 25°C			T _A = -40°	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions	
Cymbol	i uluncici	(V)	Min	Тур	Мах	Min	Max	Units	Conditions	
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$		5.0	7.0	1.0	8.5	ns		C _L = 15 pF
t _{PHL}	Time			7.5	10.5	1.0	12.0	115		$C_L = 50 \text{ pF}$
		$\textbf{5.0} \pm \textbf{0.5}$		3.5	5.0	1.0	6.0			C _L = 15 pF
				5.0	7.0	1.0	8.0	ns		$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	$\textbf{3.3}\pm\textbf{0.3}$		6.8	10.5	1.0	12.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t _{PZH}	Enable Time			9.3	14.0	1.0	16.0	115		C _L = 50 pF
		$\textbf{5.0} \pm \textbf{0.5}$		4.7	7.2	1.0	8.5			C _L = 15 pF
				6.2	9.2	1.0	10.5	ns		C _L = 50 pF
t _{PLZ}	3-STATE	$\textbf{3.3}\pm\textbf{0.3}$		11.2	15.4	1.0	17.5		$R_L = 1 k\Omega$	C _L = 50 pF
t _{PHZ}	Output	$\textbf{5.0} \pm \textbf{0.5}$		6.0	8.8	1.0	10.0	ns		C _L = 50 pF
	Disable Time									
t _{OSLH}	Output to Output Skew	$\textbf{3.3}\pm\textbf{0.3}$			1.5		1.5		(Note 4)	C _L = 50 pF
t _{OSHL}		$\textbf{5.0} \pm \textbf{0.5}$			1.0		1.0	ns		$C_L = 50 \text{ pF}$
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Ope	n
C _{OUT}	Output Capacitance			6				pF	V _{CC} = 5.0V	1
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 5)	


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|$; $t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|$.

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/8$ (per bit).

