# **Excellent Integrated System Limited**

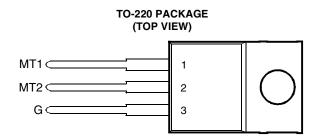
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Bourns Inc. TIC216D-S

For any questions, you can email us directly: <a href="mailto:sales@integrated-circuit.com">sales@integrated-circuit.com</a>

### **Distributor of Bourns Inc.: Excellent Integrated System Limited**


Datasheet of TIC216D-S - TRIAC SENS GATE 400V 6A TO220

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TIC216 SERIES SILICON TRIACS

## **BOURNS®**

- Sensitive Gate Triacs
- 6 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I<sub>GT</sub> of 5 mA (Quadrants 1 3)



Pin 2 is in electrical contact with the mounting base.

MDC2ACA

#### absolute maximum ratings over operating case temperature (unless otherwise noted)

| RATING                                                                              | SYMBOL              | VALUE            | UNIT |   |
|-------------------------------------------------------------------------------------|---------------------|------------------|------|---|
|                                                                                     | TIC216D             |                  | 400  |   |
| Repetitive peak off-state voltage (see Note 1)                                      | TIC216M             |                  | 600  | V |
| nepetitive peak oit-state voitage (see Note 1)                                      | TIC216S             | V <sub>DRM</sub> | 700  | V |
|                                                                                     | TIC216N             |                  | 800  |   |
| Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2     | I <sub>T(RMS)</sub> | 6                | Α    |   |
| Peak on-state surge current full-sine-waveat (or below) 25°C case temperature (s    | I <sub>TSM</sub>    | 60               | Α    |   |
| Peak gate current                                                                   | I <sub>GM</sub>     | ±1               | Α    |   |
| Peak gate power dissipation at (or below) 85°C case temperature (pulse width \$200) | $P_{GM}$            | 2.2              | W    |   |
| Average gate power dissipation at (or below) 85°C case temperature (see Note 4      | $P_{G(AV)}$         | 0.9              | W    |   |
| Operating case temperature range                                                    | T <sub>C</sub>      | -40 to +110      | °C   |   |
| Storage temperature range                                                           | T <sub>stg</sub>    | -40 to +125      | °C   |   |
| Lead temperature 1.6 mm from case for 10 seconds                                    | $T_L$               | 230              | °C   |   |

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
  - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.
  - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
  - 4. This value applies for a maximum averaging time of 20 ms.

#### electrical characteristics at 25°C case temperature (unless otherwise noted)

|                  | PARAMETER                         | TEST CONDITIONS                                                                                                                                                                  |                                                                                 |                                                                                                          |  | TYP | MAX                 | UNIT |
|------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|-----|---------------------|------|
| I <sub>DRM</sub> | Repetitive peak off-state current | V <sub>D</sub> = rated V <sub>DRM</sub>                                                                                                                                          | I <sub>G</sub> = 0                                                              | T <sub>C</sub> = 110°C                                                                                   |  |     | ±2                  | mA   |
| I <sub>GT</sub>  | Gate trigger<br>current           | $\begin{aligned} &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = -12 \text{ V}\dagger\\ &V_{supply} = -12 \text{ V}\dagger\end{aligned}$ | $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ | $t_{p(g)} > 20 \ \mu s$<br>$t_{p(g)} > 20 \ \mu s$<br>$t_{p(g)} > 20 \ \mu s$<br>$t_{p(g)} > 20 \ \mu s$ |  |     | 5<br>-5<br>-5<br>10 | mA   |

<sup>†</sup> All voltages are with respect to Main Terminal 1.

#### PRODUCT INFORMATION

## **Distributor of Bourns Inc.: Excellent Integrated System Limited**

Datasheet of TIC216D-S - TRIAC SENS GATE 400V 6A TO220

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



# **BOURNS®**

#### electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

|                      | PARAMETER                                  |                                                                                                                                                                                         | MIN                                                                             | TYP                                                                                              | MAX | UNIT    |                          |      |
|----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|---------|--------------------------|------|
| V <sub>GT</sub>      | Gate trigger<br>voltage                    | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$ | $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ | $t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$ |     |         | 2.2<br>-2.2<br>-2.2<br>3 | V    |
| V <sub>T</sub>       | On-state voltage                           | I <sub>T</sub> = ±8.4 A                                                                                                                                                                 | I <sub>G</sub> = 50 mA                                                          | (see Note 5)                                                                                     |     |         | ±1.7                     | V    |
| I <sub>H</sub>       | Holding current                            | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$<br>$V_{\text{supply}} = -12 \text{ V}^{\dagger}$                                                                                          | $I_{G} = 0$ $I_{G} = 0$                                                         | Init' I <sub>TM</sub> = 100 mA<br>Init' I <sub>TM</sub> = -100 mA                                |     |         | 30<br>-30                | mA   |
| IL                   | Latching current                           | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$<br>$V_{\text{supply}} = -12 \text{ V}^{\dagger}$                                                                                          | (see Note 6)                                                                    |                                                                                                  |     | 4<br>-2 |                          | mA   |
| dv/dt                | Critical rate of rise of off-state voltage | $V_{DRM} = Rated V_{DRM}$                                                                                                                                                               | I <sub>G</sub> = 0                                                              | T <sub>C</sub> = 110°C                                                                           |     | ±20     |                          | V/µs |
| dv/dt <sub>(c)</sub> | Critical rise of commutation voltage       | $V_{DRM} = Rated V_{DRM}$                                                                                                                                                               | I <sub>TRM</sub> = ±8.4 A                                                       | T <sub>C</sub> = 70°C                                                                            | ±2  | ±5      |                          | V/µs |

<sup>†</sup> All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques,  $t_p = \le 1$  ms, duty cycle  $\le 2$  %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:  $R_G = 100~\Omega,~t_{p(g)} = 20~\mu s,~t_r = \leq 15~ns,~f = 1~kHz.$ 

#### thermal characteristics

| PARAMETER       |                                         |  |   |   | - | $\overline{}$            | Ī | MIN | TYP | MAX | UNIT |      |
|-----------------|-----------------------------------------|--|---|---|---|--------------------------|---|-----|-----|-----|------|------|
| $R_{\theta JC}$ | Junction to case thermal resistance     |  | ? |   | 7 | 1.                       |   |     |     |     | 2.5  | °C/W |
| $R_{\theta JA}$ | Junction to free air thermal resistance |  |   | _ |   | $\overline{\mathcal{J}}$ |   |     |     |     | 62.5 | °C/W |

135