Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics STGD6NC60H-1

For any questions, you can email us directly: sales@integrated-circuit.com

N-channel 600 V, 7 A - IPAK Very fast PowerMESH™ IGBT

Datasheet - production data

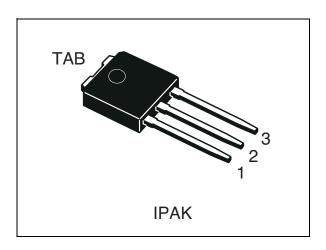
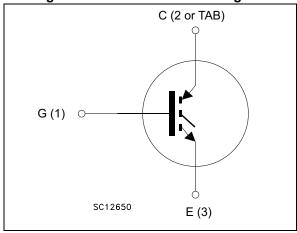



Figure 1. Internal schematic diagram

Features

Туре	V _{CES}	V _{CE(sat)} max@25°C	I _C @100°C
STGD6NC60H	600V	<2.5V	7A

- Low on voltage drop (V_{cesat})
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- High frequency operation

Description

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH $^{\text{TM}}$ IGBTs, with outstanding performances. The suffix H identifies a family optimized for high frequency application in order to achieve very high switching performances (reduced t_{fall}) maintaining a low voltage drop.

Applications

- · High frequency inverters
- SMPS and PFC in both hard switch and resonant topologies
- Motor drivers

Table 1. Device summary

Part number	Marking	Package	Packaging
STGD6NC60H-1	GD6NC60H	IPAK	Tube

Contents STGD6NC60H-1

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	9
4	Package mechanical data	10
5	Revision history	12

STGD6NC60H-1 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GS} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at T _C = 25°C	15	Α
I _C ⁽¹⁾	Collector current (continuous) at T _C = 100°C	7	Α
I _{CM} ⁽²⁾	Collector current (pulsed)	21	Α
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at T _C = 25°C	62.5	W
T _{stg}	Storage temperature	– 55 to 150	°C
Tj	Operating junction temperature	- 55 10 150	
T _I	Maximum lead temperature for soldering purpose (for 10sec. 1.6 mm from case)	300	°C

1. Calculated according to the iterative formula:.

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2. Pulse width limited by max junction temperature

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	2	°C/W
Rthj-amb	Thermal resistance junction-ambient max	100	°C/W

Electrical characteristics

STGD6NC60H-1

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	$I_C= 1 \text{mA}, V_{GE}= 0$	600			٧
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15V, I _C = 3A V _{GE} = 15V, I _C = 3A, T _C = 125°C		1.9 1.7	2.5	< <
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600V V _{CE} = 600V, T _C = 125°C			10 1	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20V, V _{CE} = 0			±100	nA
9 _{fs}	Forward transconductance	V _{CE} = 15V _, I _C = 3A		3		S

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	205	-	pF
C _{oes}	Output capacitance	$V_{CE} = 25V$, $f = 1MHz$, $V_{GE} = 0$	-	32	-	pF
C _{res}	Reverse transfer capacitance		-	5.5	-	pF
Qg	Total gate charge	$V_{CE} = 390V, I_{C} = 3A,$	-	13.6	-	nC
Q _{ge}	Gate-emitter charge	V _{GE} = 15V,		3.4		nC
Q _{gc}	Gate-collector charge	(see Figure 17)		5.1		nC
I _{CL}	Turn-off SOA minimum current	V _{clamp} =390V, Tj=150°C, R _G =10Ω, V _{GE} =15V	-	19	-	Α

Electrical characteristics

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{CC} = 390V, I_{C} = 3A$	-	12	-	ns
t _r	Current rise time	$R_G = 10\Omega$, $V_{GE} = 15V$,	-	5	-	ns
(di/dt) _{on}	Turn-on current slope	(see Figure 18)	-	612	-	A/µs
t _{d(on)}	Turn-on delay time	$V_{CC} = 390V, I_{C} = 3A$	-	13	-	ns
t _r	Current rise time	R_G = 10 Ω , V_{GE} = 15 V , T_{I} =125 $^{\circ}$ C	-	4.3	-	ns
(di/dt) _{on}	Turn-on current slope	(see Figure 18)	-	560	-	Αμs
t _{r(Voff)}	Off voltage rise time	$V_{CC} = 390V, I_{C} = 3A,$ $R_{GE} = 10\Omega, V_{GE} = 15V$ (see Figure 18)	-	40	-	ns
t _{d(off)}	Turn-off delay time		-	76	-	ns
t _f	Current fall time		-	100	-	ns
t _{r(Voff)}	Off voltage rise time	$V_{CC} = 390V, I_{C} = 3A,$	-	60	-	ns
t _{d(off)}	Turn-off delay time	$R_{GE} = 10\Omega, V_{GE} = 15V,$ $T_{J}=125^{\circ}C$	-	98	-	ns
t _f	Current fall time	(see Figure 18)	-	124	-	ns

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 390V, I_{C} = 3A$	-	20	-	μJ
E _{off} ⁽²⁾	Turn-off switching losses	$R_G = 10\Omega, V_{GE} = 15V$	-	68	-	μJ
E _{ts}	Total switching losses	(see Figure 18)	-	88	-	μJ
E _{on} ⁽¹⁾	Turn-on switching losses	V _{CC} = 390V, I _C = 3A	-	37	-	μJ
E _{off} ⁽²⁾	Turn-off switching losses	R _G = 10Ω, V _{GE} =15V, Tj=	-	93	-	μJ
E _{ts}	Total switching losses	(see Figure 18)	ı	130	ı	μJ

Eon is the tun-on losses when a typical diode is used in the test circuit in Figure 18. If the IGBT is offered
in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the
same temperature (25°C and 125°C)

2. Turn-off losses include also the tail of the collector current

Electrical characteristics

STGD6NC60H-1

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

HV30130 Vgs=15V lc(A) 14V 30 13V 25 12V 20 11<u>V</u> 107 8٧ 7V 6٧ 10 15 20 25 V_{ce}(V)

Figure 3. Transfer characteristics

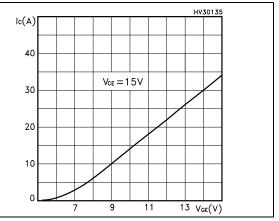
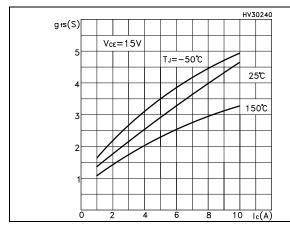



Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs temperature

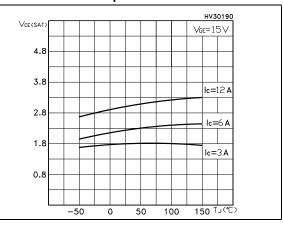


Figure 6. Gate charge vs gate-source voltage

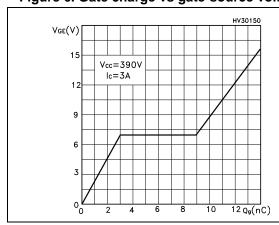
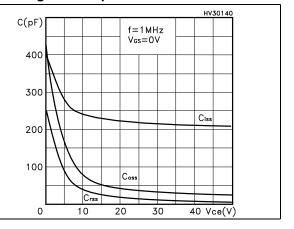



Figure 7. Capacitance variations

6/13 DocID025306 Rev 1

0.7

0.6

Electrical characteristics

 $I_{c}(A)$

Figure 8. Normalized gate threshold voltage vs temperature

Figure 10. Normalized breakdown voltage vs temperature

50

100

150 ⊤յ(℃)

Figure 11. Switching losses vs temperature

Figure 9. Collector-emitter on voltage vs

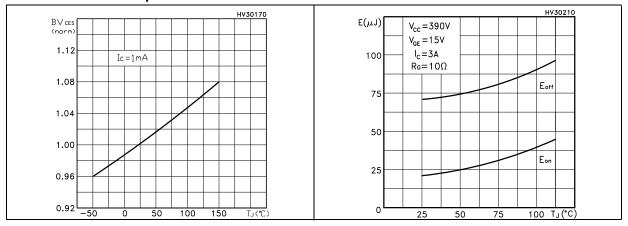
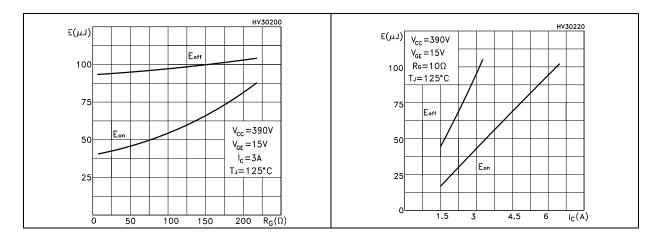



Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

Electrical characteristics

STGD6NC60H-1

Figure 14. Thermal impedance

Figure 15. Turn-off SOA δ = 0.5 10 10⁰ $Z_{th} = k R_{thJ-c}$ 0.01 $\delta = \, \mathsf{t_p} / \tau$ 10 SINGLE PULSE 10⁻¹ †p (s) 10⁻³

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STGD6NC60H-1 Test circuit

3 Test circuit

Figure 16. Test circuit for inductive load switching

Figure 17. Gate charge test circuit

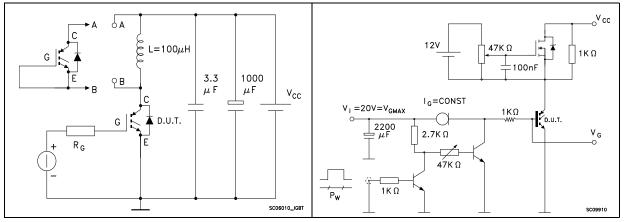
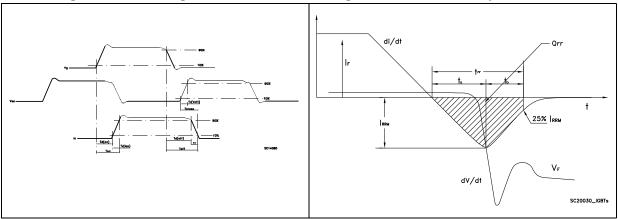



Figure 18. Switching waveform

Figure 19. Diode recovery time waveform

Package mechanical data

STGD6NC60H-1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 20. IPAK (TO-251) drawing

b (3x)

B5

DocID025306 Rev 1

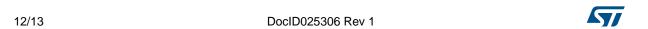
47/

0068771_K

Package mechanical data

Table 8. IPAK (TO-251) mechanical data

DIM	mm.				
DIW	min.	typ.	max.		
Α	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
B5		0.30			
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
L1	0.80		1.20		
L2		0.80	1.00		
V1		10°			



Revision history STGD6NC60H-1

5 Revision history

Table 9. Revision history

Date	Revision	Changes
08-Apr-2014	1	First release.

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STGD6NC60H-1 - IGBT N-CH 600V 7A IPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STGD6NC60H-1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

