Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery \& Lifecycle Information:

E-T-A
E-1048-8C4-C0AOVO-4U3-20A

For any questions, you can email us directly:
sales@integrated-circuit.com

E E•T『Å Smart Power Relay E－1048－8C．．．

Description

The Smart Power Relay E－1048－8C－is a remotely controllable electronic load disconnecting relay with three functions in a single unit：
－electronic relay
－electronic overcurrent protection
－status and monitoring functions
The 7 pin CUBIC version is designed for use with standard automotive relay sockets．A choice of current ratings is available from 1 A through 25 A ．An operating voltage range of DC 9．．． 32 V allows the connection of DC 12 V and DC 24 V loads．

In order to switch and protect loads remotely，it has until now been necessary to connect several discreet components together
－an electro－mechanic relay，control cable and integral contact to close the load circuit
－an additional protective element（circuit breaker or fuse）for cable or equipment protection
－a device for current measurement（shunt）
Now type E－1048－8C combines all these functions in a single unit， thus minimising the number of connections in the circuit and thereby reducing the risk of failures．

Applications

Type E－1048－8C is suited to all applications with DC 12 V or DC 24 V circuits，where magnetic valves，motors or lamp loads have to be switched，protected and monitored：
－road vehicles（utility vehicles，buses，special vehicles）
－rail vehicles
－marine industry（ships，boats，yachts etc．）
The Power Relay is also suitable for industrial use（process control， machine－building，engineering）as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

－Integral power electronics provide a wear－resistant switching function，insensitive to shock，vibration and dust．
－Compared to electro－mechanical relays，only a fraction of the closed－circuit current or switching current is needed．This is important for battery buffered load circuits which have to remain controlled even with the generator off line．
－The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications．
－The load circuit is disconnected in the event of an overload or short circuit．
－The load circuit is permanently monitored for wire breakage．
－Two status outputs for control signal AS and group signal SF provide status indication．For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided．This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value．
－For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel．Uniform power distribution between units must be ensured by symmetrical design of the supply cables （length and cross section）．
－Coloured label，for the identification the rated current（e．g．red＝ 10 A ）

Technical Data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE＋

Type	DC power supply with small R_{i} battery and generator etc．
Voltage ratings U_{N}	DC $12 \mathrm{~V} / \mathrm{DC} 24 \mathrm{~V}$
Operating voltage U_{S} ：	DC 9．．． 32 V
Closed－circuit current I_{0} in the OFF condition	$<1 \mathrm{~mA}$
Load circuit LOAD	
Load output	Power MOSFET，high side switching HSS
Current rating range l_{N}	1 A ．．． 25 A（fixed rating） without load reduction up to $85^{\circ} \mathrm{C}$ （1 A．．． 20 A ）， 25 A bis $60^{\circ} \mathrm{C}$ ambient temperature $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}$ ：trip curve 1 $\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} . .25 \mathrm{~A}$ ：trip curve 2
Types of loads	resistive，inductive，capacitive，lamp loads，motors（depending on duration of inrush current）

Typical voltage drop $U_{O N}$ at rated current $I_{N}{ }^{1)}$

$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$	$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		

Switching point 1）
Trip time ${ }^{1)}$
max．overload
Temperature disconnection
Parallel connection of channels for loads of 25 A plus，several units of identical current ratings may be connected in parallel．To ensure equal distribution of current between units， symmetrical design of the supply feed is necessary（length and cross section）．

Free－wheeling diode

 for connected loadDelay time ${ }^{1)}$
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$
typically 200 ms with switch－on onto overload and／or load increase on duty $I_{N}=1 A \ldots 10 \mathrm{~A}: 60 \mathrm{~A}$（at $L / R=3 \mathrm{~ms}$ ） $I_{N}=15 A \ldots 25 A: 250 \mathrm{~A}$（at $L / R=3 \mathrm{~ms}$ ） power transistor $>150^{\circ} \mathrm{C}$
Parale connection of channel

integral

$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} \ldots 10 \mathrm{~A}: 40 \mathrm{~A}$
$\mathrm{I}_{\mathrm{N}}=15 \mathrm{~A} \ldots 25 \mathrm{~A}: 100 \mathrm{~A}$
$\mathrm{t}_{\mathrm{on}} 5 \mathrm{~ms} / \mathrm{t}_{\text {off }} 1.5 \mathrm{~ms}$

E E-T『Å Smart Power Relay E-1048-8C...

Technical Data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$	$\mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$
Wire breakage monitoring in wire breakage thresholds:	
condition of load ${ }^{1)}$	in OFF-condition (ver.1): $\mathrm{R}_{\text {load }}>100 \mathrm{k} \Omega$ in OFF-condition (ver.2): $\mathrm{R}_{\text {load }}>10 \mathrm{k} \Omega$
	in ON-condition: $\mathrm{I}_{\text {load }}<0.2 \times \mathrm{I}_{\mathrm{N}}$
	indication via group fault signalisation
	SF (switching output)
	Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear
	Possible options:
	- wire breakage indication only in ON condition
	- wire breakage indication only in OFF condition
	- no wire breakage indication)
Short circuit, overload in load circuit	- disconnection of load, indication via group signal SF
	- no automatic re-start
	- after remedy of the fault unit has to be reset via control input IN+
Control input IN+	
Control voltage IN+	$0 . . .5 \mathrm{~V}=$ "OFF", 8.5...32 V = "ON"
Control current I_{E}	1... 10 mA (8.5...DC 32 V)
Reset in the event of a failure	- via external control signal (low-high) at control input $\mathrm{IN}+$ - high) at control input IN+ - via reset of supply voltage
Switching frequency	
Edge of IN	$<5 \mathrm{~ms}$
Status and diagnostic functions	
Control signal AS	
	(LSS), open collector, short circuit and overload
	proof, max. load: DC $32 \mathrm{~V} / 2 \mathrm{~A}$
	0 V-level: when unit is set (at $\mathrm{IN}+=8.4 \ldots 32 \mathrm{~V}$)
Group signal SF	transistor output low side switching
	(LSS), open collector, short circuit and overload
	proof, load max. DC $32 \mathrm{~V} / 2 \mathrm{~A}$
	0 V-level with overload and short circuit disconnection, wire breakage indication
Analogue output U(I)	voltage output 0-5 V proportional to load current:
	$1 \mathrm{~V}=0.2 \times \mathrm{I}_{\mathrm{N}}$
	$5 \mathrm{~V}=1.0 \times \mathrm{I}_{\mathrm{N}}$
	5 V ... typically $6.5 \mathrm{~V}=$ overload range tolerance: (for $\mathrm{I}_{\text {load }}>0.2 \times \mathrm{I}_{\mathrm{N}}$)
	$\pm 8 \%$ of I_{N}
	max. output current 5 mA
	load resistance $>1 \mathrm{k} \Omega$ against GND response time when switching on a load:
Trip times ${ }^{1)}$ definition of t_{90} reached 90% of final value	$\mathrm{t}_{90}=20 \mathrm{~ms}$ response time of load change on duty: $\mathrm{t}_{90}=1 \mathrm{~ms}$
Visual status indication	
control signal AS	LED yellow
group fault signal SF	LED red
General data	
Reverse polarity protection	
Control circuit	yes
Load circuit	no (due to integral free-wheeling diode)
Status outputs	interference voltage resistance max. DC 32 V

rip times ${ }^{1)}$ definition of tgo

General data

y protection

Status outputs

Technical Data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{A}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

E-T『A Smart Power Relay E-1048-8C...

Ordering Information

Preferred types

Preferred types	Standard current ratings (A)					
	5	7.5	10	15	20	25
$\mathrm{E}-1048-8 \mathrm{C} 4-\mathrm{C} 3 \mathrm{~A} 1 \mathrm{~V} 0-4 \mathrm{U} 3-$	x	x	x	x	x	x

Approvals

Authority	Approval mark	Regulation
KBA	E1	ECE R 10

Dimensions „DELUXE" version (7 pin version)

Dimensions „BASIC Version" (4 pin version)

E-TVÅ Smart Power Relay E-1048-8C...

Typical time/current characteristics (Tu = $25^{\circ} \mathrm{C}$)

Trip curve 1:

1 A, 2 A, 3 A, 5 A, 71/2 A and 10 A (standard 200 ms)

... times rated current I_{N}
Trip curve 2: 15 A, 20 A and 25 A (standard 200 ms)

... times rated current I_{N}

Connection diagram

Pin selection CUBIC version (7 pin = "DELUXE")

Pin selection CUBIC version (4 pin = "BASIC")

