

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Diodes Division</u> <u>V20WM100C-M3/I</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of V20WM100C-M3/I - DIODE SCHOTTKY 20A 100V DPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

V20WM100C-M3

COMPLIANT

HALOGEN

FREE

Vishay General Semiconductor

Dual Trench MOS Barrier Schottky Rectifier

Ultra Low $V_F = 0.53 \text{ V}$ at $I_F = 5 \text{ A}$

V20WM100C

PRIMARY CHARACTERISTICS					
I _{F(AV)}	2 x 10 A				
V_{RRM}	100 V				
I _{FSM}	100 A				
V_F at $I_F = 10 \text{ A } (T_A = 125 \text{ °C})$	0.64 V				
T _J max.	150 °C				
Package	TO-252 (D-PAK)				
Diode variation	Dual common cathode				

FEATURES

- Trench MOS Schottky technology
- · Ideal for automated placement
- Low forward voltage drop, low power losses
- High efficiency operation
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

For use in high frequency DC/DC converters, switching power supplies, freewheeling diodes, OR-ing diode, and reverse battery protection.

MECHANICAL DATA

Case: TO-252 (D-PAK)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and

commercial grade

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test

Polarity: As marked

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER		SYMBOL	V20WM100C	UNIT	
Maximum repetitive peak reverse voltage		V_{RRM}	100	V	
Maximum average forward rectified current (fig. 1)	per device	I _{F(AV)}	20	Α	
	per diode		10		
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load per diode		I _{FSM}	100	А	
Operating junction and storage temperature range		T _J , T _{STG}	-40 to +150	°C	

Datasheet of V20WM100C-M3/I - DIODE SCHOTTKY 20A 100V DPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

V20WM100C-M3

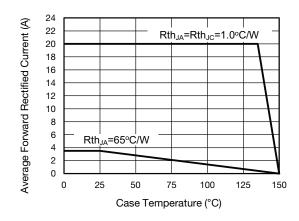
Vishay General Semiconductor

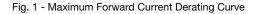
ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT
Instantaneous forward voltage per diode	I _F = 5 A	T _A = 25 °C	V _F ⁽¹⁾	0.58	-	V
	I _F = 10 A			0.72	0.82	
	I _F = 5 A	T _A = 125 °C		0.53	-	
	I _F = 10 A			0.64	0.73	
Reverse current per diode	V _R = 100 V	, T _A = 25 °C	I _R ⁽²⁾	-	800	μΑ
	$V_{R} = 100 \text{ V}$ $T_{A} = 125 \text{ °C}$	'R ` ′	4	24	mA	

Notes

 $^{(1)}$ Pulse test: 300 μ s pulse width, 1 % duty cycle

(2) Pulse test: Pulse width $\leq 5 \text{ ms}$


THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)				
PARAMETER		SYMBOL	V20WM100C	UNIT
	per diode	$R_{ hetaJC}$	2.0	°C/W
Typical thermal resistance	per device		1.0	
	per device	R _{θJA} (1)(2)	65	


(1) The heat generated must be less than the thermal conductivity from junction-to-ambient: $dP_D/dT_J < 1/R_{\theta JA}$

⁽²⁾ Free air, without heatsink

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
V20WM100C-M3/I	0.38	I	2500/reel	13" diameter plastic tape and reel	

RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

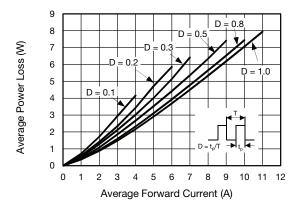


Fig. 2 - Forward Power Loss Characteristics Per Diode

10

0.1

Datasheet of V20WM100C-M3/I - DIODE SCHOTTKY 20A 100V DPAK

www.vishay.com

V20WM100C-M3

10

100

Vishay General Semiconductor

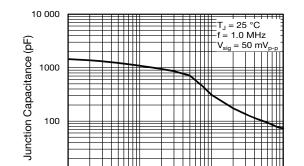


Fig. 5 - Typical Junction Capacitance Per Diode

Reverse Voltage (V)

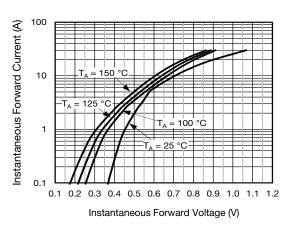


Fig. 3 - Typical Instantaneous Forward Characteristics Per Diode

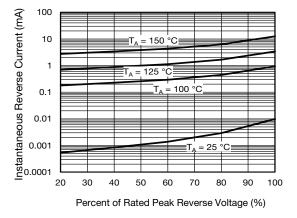


Fig. 4 - Typical Reverse Characteristics Per Diode

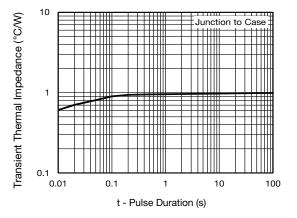
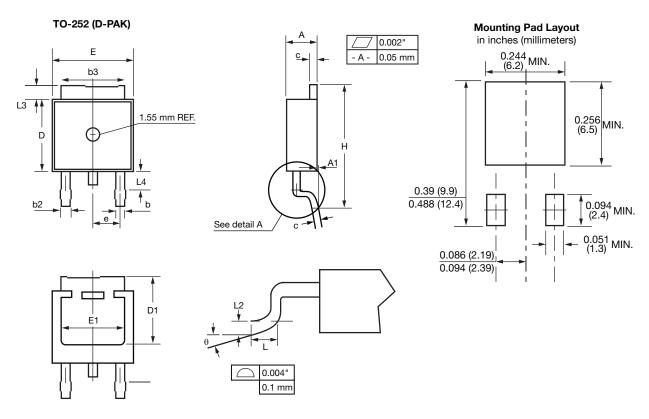


Fig. 6 - Typical Transient Thermal Impedance Per Device


Datasheet of V20WM100C-M3/I - DIODE SCHOTTKY 20A 100V DPAK Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

V20WM100C-M3

Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

OVMBOL	INC	CHES	MILLIMETERS		
SYMBOL	MIN.	MAX.	MIN.	MAX.	
A	0.086	0.094	2.19	2.38	
A1	-	0.005	-	0.13	
b	0.025	0.035	0.64	0.89	
b2	0.033	0.045	0.84	1.14	
b3	0.205	0.215	5.21	5.46	
С	0.018	0.024	0.46	0.61	
D	0.235	0.250	5.97	6.22	
D1	0.205	-	5.21	-	
Е	0.250	0.265	6.35	6.73	
E1	0.190	-	4.83	-	
е	0.090	BSC.	2.29 BSC.		
Н	0.380	0.410	9.65	10.41	
L	0.055	0.070	1.40	1.78	
L2	0.020	0.020 BSC.		BSC.	
L3	0.035	0.050	0.89	1.27	
L4	0.025	0.039	0.64	1.01	
θ	0°	8°	0°	8°	

Note

• Conforms to JEDEC® TO-252 variation AA except dimension "D"

Revision: 04-Dec-13 4 Document Number: 89978

Datasheet of V20WM100C-M3/I - DIODE SCHOTTKY 20A 100V DPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishav

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 Document Number: 91000 1