

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Diodes Division</u> <u>VS-SA61BA60</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VS-SA61BA60

www.vishay.com

Vishay Semiconductors


Single Phase Fast Recovery Bridge (Power Modules), 61 A

PRODUCT SUMMARY	
V_{RRM}	600 V
lo	61 A
t _{rr}	170 ns
Туре	Modules - Bridge, Fast
Package	SOT-227
Circuit	Single phase bridge

FEATURES

- · Simplified mechanical designs, rapid assembly
- Excellent power/volume ratio
- Designed and qualified for industrial and consumer level
- UL approved file E78996
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

DESCRIPTION

The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
		61	Α		
IO	T _C	57	°C		
I _{FSM}	50 Hz	300	٨		
	60 Hz	310	А		
I ² t	50 Hz	442	A ² s		
	60 Hz	402	A-5		
V_{RRM}		600	V		
T _J		-55 to +150	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RA	TINGS			
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J MAXIMUM mA	
SA61BA60	60	600	700	10

Revision: 31-May-16 1 Document Number: 94688

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Case style

www.vishay.com


VS-SA61BA60

Vishay Semiconductors

SOT-227

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum DC output current	1.	Resistive or in	ductive load		61	Α
at case temperature	Io				57	°C
		t = 10 ms	No voltage		300	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		310	A
non-repetitive forward current	I _{FSM}	t = 10 ms	100 % V _{RRM}		250] ^
		t = 8.3 ms	reapplied	Initial T _J =	260	-
		t = 10 ms	No voltage	T _J maximum	442	
Maximum 12t for fraing	I ² t	t = 8.3 ms	reapplied		402	A^2 s
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		313	A-S
		t = 8.3 ms	reapplied		284	1
Maximum I ² √t for fusing	I²√t	I^2t for time $t_x = I_2 \sqrt{t} \times \sqrt{t_x}$; $0.1 \le t_x \le 10$ ms, $V_{RRM} = 0$ V			4.4	kA²√s
Value of threshold voltage	V _{F(TO)}	T _J maximum			0.914	V
Forward slope resistance	r _t				10.5	mΩ
Maximum famuand valtage dues	W	T _J = 25 °C, I _{FN}	_A = 30 A _{pk}	± 400 · · ·	1.33	
Maximum forward voltage drop	V_{FM}	T _J = T _J maxim	ium, I _{FM} = 30 A _{pk}	t _p = 400 μs	1.23	V
RMS isolation voltage base plate	V _{ISOL}	f = 50 Hz, t =	1 s		3000	1

RECOVERY CHARACTERISTICS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Reverse recovery time, typical	t _{rr}	$T_J = 25 ^{\circ}\text{C}, \ I_F = 20 \text{A}, \ V_R = 30 \text{V}, \ dI_F/dt = 100 \text{A/}\mu\text{s}$	170		
		$T_J = 125 ^{\circ}\text{C}$, $I_F = 20 \text{A}$, $V_R = 30 \text{V}$, $dI_F/dt = 100 \text{A/}\mu\text{s}$	250	ns	
Reverse recovery current, typical	I _{rr}	$T_J = 25 ^{\circ}\text{C}, \ I_F = 20 \text{A}, \ V_R = 30 \text{V}, \ dI_F/dt = 100 \text{A/}\mu\text{s}$	10.5	А	
		$T_J = 125 ^{\circ}\text{C}$, $I_F = 20 \text{A}$, $V_R = 30 \text{V}$, $dI_F/dt = 100 \text{A/}\mu\text{s}$	16	A	
Reverse recovery charge, typical	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, \ I_F = 20 \text{A}, \ V_R = 30 \text{V}, \ dI_F/dt = 100 \text{A/}\mu\text{s}$	900	nC	
		$T_J = 125 ^{\circ}\text{C}, I_F = 20 \text{A}, V_R = 30 \text{V}, \\ dI_F/dt = 100 \text{A/}\mu\text{s}$	1970	- nc	
Snap factor, typical	S	T _J = 25 °C	0.6	1	
Junction capacitance, typical	C _T	V _R = 600 V	67	pF	

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VS-SA61BA60

Vishay Semiconductors

VISHAY

www.vishay.com

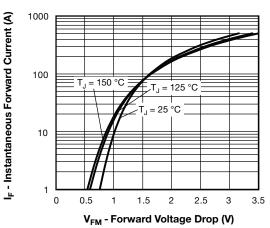


Fig. 1 - Typical Forward Voltage Drop Characteristics

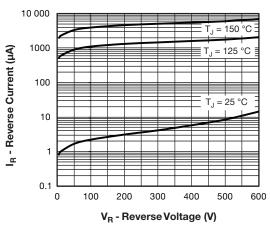


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

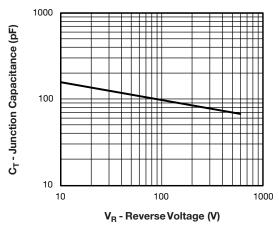


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

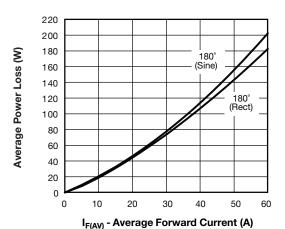


Fig. 4 - Current Rating Characteristics

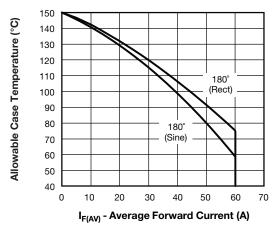


Fig. 5 - Forward Power Loss Characteristics

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VS-SA61BA60

Vishay Semiconductors

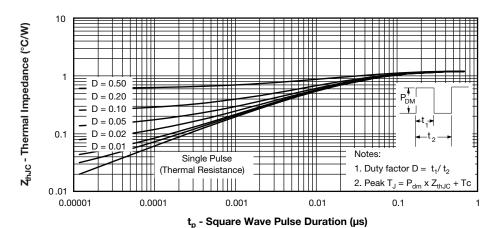


Fig. 6 - Typical Forward Voltage Drop Characteristics

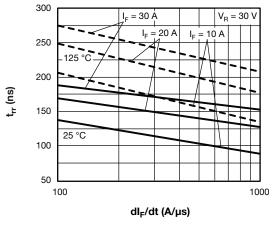


Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt

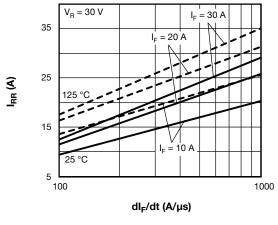


Fig. 9 - Typical Reverse Recovery Current vs. dI_F/dt

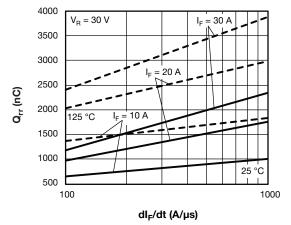


Fig. 8 - Typical Stored Charge vs. dl_F/dt

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VISHAY. ___

www.vishay.com

Vishay Semiconductors

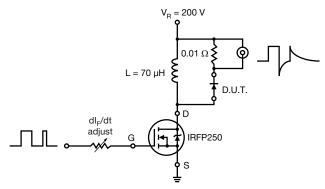
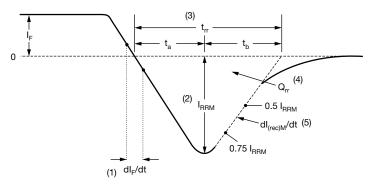



Fig. 10 - Reverse Recovery Parameter Test Circuit

- (1) dI_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_{F} to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (4) $\mathbf{Q}_{\rm rr}$ area under curve defined by $\mathbf{t}_{\rm rr}$ and $\mathbf{I}_{\rm RRM}$

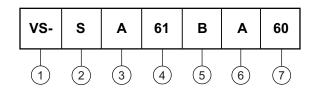
$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 11 - Reverse Recovery Waveform and Definitions

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



VS-SA61BA60

Vishay Semiconductors

ORDERING INFORMATION TABLE

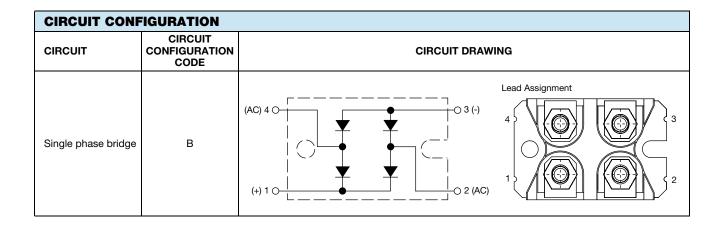
Device code

1 - Vishay Semiconductors product

- S = Fast recovery diode

3 - A = Present Silicon Generation

4 - Current rating (61 = 61 A)


Circuit configuration:

B = Single phase bridge

6 - Package indicator:

A = SOT-227, standard insulated base

7 - Voltage rating (60 = 600 V)

Datasheet of VS-SA61BA60 - MOD BRIDGE 61A 600V 1-PH SOT-227

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000