

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Diodes Division</u> <u>VS-VSKDU162/12PBF</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Vishay Semiconductor/Diodes Division: Excellent Integrated System Limite Datasheet of VS-VSKDU162/12PBF - MOD DIODE 1200V 205A INT-A-PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

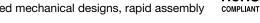
www.vishay.com

VS-VSKDU162/12PbF

Vishay Semiconductors

HEXFRED® Ultrafast Diodes, 100 A (New INT-A-PAK Power Modules)

New INT-A-PAK


PRODUCT SUMMARY				
V_{R}	1200 V			
V _F (typical)	2.5 V			
t _{rr} (typical)	150 ns			
I _{F(DC)} at T _C	110 A at 100 °C			
Package	INT-A-PAK			
Circuit	Two diodes doubler circuit			

FEATURES

• Electrically isolated: DBC base plate

· Simplified mechanical designs, rapid assembly

- · High surge capability
- · Large creepage distances
- UL approved file E78996
- Case style New INT-A-PAK
- Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Cathode to anode voltage	V_R		1200	V	
Continuous forward current	I _F	T _C = 25 °C	205		
		T _C = 100 °C	110	Α	
Single pulse forward current	I _{FSM}	Limited by junction temperature	800		
Maximum nawar dinainatian	P _D	T _C = 25 °C	695	W	
Maximum power dissipation		T _C = 100 °C	280		
RMS isolation voltage	V _{ISOL}	50 Hz, circuit to base, all terminal shorted, t = 1 s	3500	V	
Operating junction and storage temperature range	T _J , T _{Stg}		-40 to + 150	°C	

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V_{BR}	Ι _R = 100 μΑ	1200	ı	1	
Maximum forward voltage	V	I _F = 100 A	-	2.5	3.2	V
	V_{FM}	I _F = 160 A	-	2.9	3.9	
Maximum reverse leakage current	I _{RM}	T _J = 150 °C, V _R = 1200 V	_	18	30	mA

Revision: 11-Apr-14 Document Number: 94512

Distributor of Vishay Semiconductor/Diodes Division: Excellent Integrated System Limite Datasheet of VS-VSKDU162/12PBF - MOD DIODE 1200V 205A INT-A-PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VS-VSKDU162/12PbF

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time	t _{rr}	T _J = 25 °C		-	150	200	ns
Reverse recovery current	I _{RRM}	T _J = 25 °C	I _F = 160 A dI _F /dt = 200 A/µs	-	20	22	Α
Reverse recovery charge	Q_{rr}	T _J = 25 °C	$V_{\rm R} = 200 \text{ V}$	-	2000	2400	nC
Peak rate of recovery current	dI _{(rec)M} /dt	T _J = 25 °C		-	-	300	A/μs

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Junction operating and storage temperature range		T _J , T _{Stg}		- 40 to 150	°C	
Maximum internal thermal resistance, junction to case per leg		R_{thJC}	DC operation	0.18	°C/W	
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.05		
Mounting toward 10.0/	to heatsink		A mounting compound is recommended and the	4	Nm	
Mounting torque ± 10 % —	busbar		torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	6		
Approximate weight				200	g	
				7.1	OZ.	
Case style				New INT	-A-PAK	

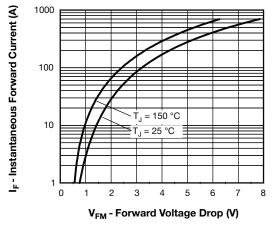


Fig. 1 - Maximum Forward Voltage Drop Characteristics

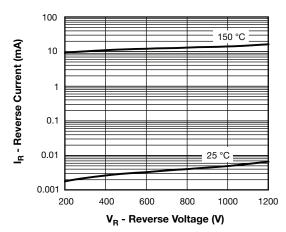


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

VS-VSKDU162/12PbF

Vishay Semiconductors

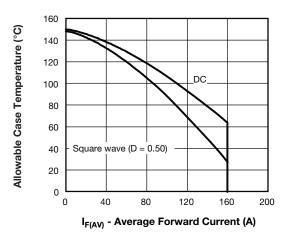


Fig. 3 - Maximum Allowable Case Temperature vs. Average Forward Current

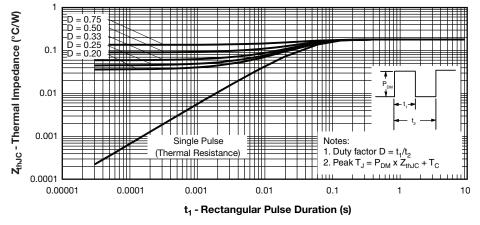


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

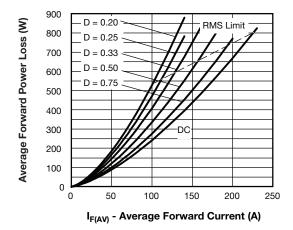


Fig. 5 - Forward Power Loss Characteristics

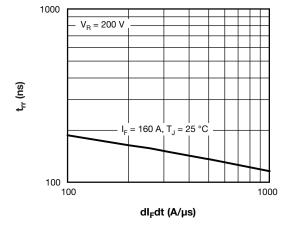


Fig. 6 - Typical Reverse Recovery Time vs. dI_F/dt (Per Leg)

Distributor of Vishay Semiconductor/Diodes Division: Excellent Integrated System Limite

Datasheet of VS-VSKDU162/12PBF - MOD DIODE 1200V 205A INT-A-PAK Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VS-VSKDU162/12PbF

Www.vishay.com

Vishay Semiconductors

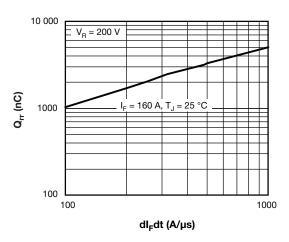


Fig. 7 - Typical Reverse Recovery Charge vs. dl_F/dt (Per Leg)

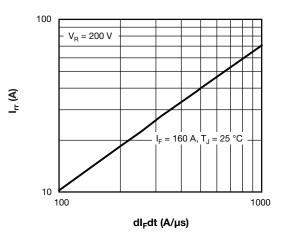
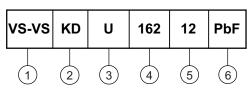



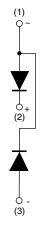
Fig. 8 - Typical Reverse Recovery Current vs. dl_F/dt (Per Leq)

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Circuit configuration


U = HEXFRED® ultrafast diode

Current rating

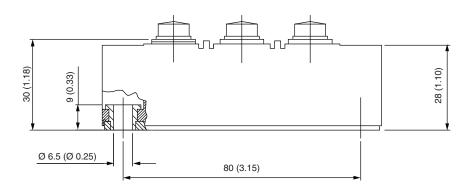
Voltage rating (12 = 1200 V)

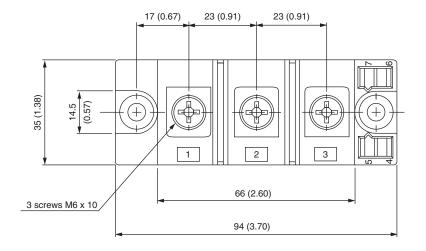
6 - PbF = Lead (Pb)-free

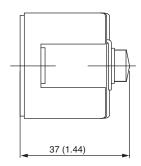
CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95254			

Revision: 11-Apr-14 4 Document Number: 94512




Outline Dimensions


Vishay Semiconductors

INT-A-PAK DBC

DIMENSIONS in millimeters (inches)

Document Number: 95254 Revision: 11-Dec-07 For technical questions, contact: indmodules@vishay.com

Distributor of Vishay Semiconductor/Diodes Division: Excellent Integrated System Limite Datasheet of VS-VSKDU162/12PBF - MOD DIODE 1200V 205A INT-A-PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishav

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 Document Number: 91000 1