

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay Semiconductor/Diodes Division VS-10WT10FNTR

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

VS-10UT10, VS-10WT10FN

Vishay Semiconductors

High Performance Generation 5.0 Schottky Rectifier, 10 A

Base

cathode 9 4

I-PAK (TO-251AA) D-PAK (TO-252AA) Base cathode 4 3 Anode Anode Anode 75 Cathode

Anode

75

3

1 Cathode

VS-10UT10

VS-10WT10FN

PRODUCT SUMMARY				
Package	I-PAK (TO-251AA), D-PAK (TO-252AA)			
I _{F(AV)}	10 A			
V _R	100 V			
V_F at I_F	0.66 V			
I _{RM} max.	4 mA at 125 °C			
T _J max.	175 °C			
Diode variation	Single die			
E _{AS}	54 mJ			

FEATURES

- 175 °C high performance Schottky diode
- Very low forward voltage drop
- Extremely low reverse leakage
- RoHS Optimized V_F vs. I_R trade off for high efficiency COMPLIANT
- · Increased ruggedness for reverse avalanche capability
- RBSOA available
- Negligible switching losses
- Submicron trench technology
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47

APPLICATIONS

- High efficiency SMPS
- High frequency switching
- Output rectification
- Reverse battery protection
- Freewheeling
- DC/DC systems
- · Increased power density systems

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
V _{RRM}		100	V			
VF	10 Apk, $T_J = 125 \ ^\circ C$ (typical)	0.615	V			
TJ	Range	- 55 to 175	۵°			

VOLTAGE RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VS-10UT10 VS-10WT10FN	UNITS
Maximum DC reverse voltage	V _R	T _J = 25 °C	100	V

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T_C = 159 °C, rectangular waveform		10	А
Maximum peak one cycle non-repetitive surge current	I _{FSM}	5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated V _{RRM} applied ⁽¹⁾	610	A
		10 ms sine or 6 ms rect. pulse		110	
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 3 A, L = 12 mH		54	mJ
Repetitive avalanche current	I _{AR}	Limited by frequency of operation and time pulse duration so that $T_J < T_J$ max. I_{AS} at T_J max. as a function of time pulse (see fig. 8)		I _{AS} at T _J max.	A

Note

⁽¹⁾ Measured connecting 2 anode pins

Revision: 02-Nov-11

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

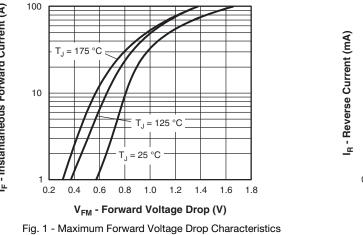
1

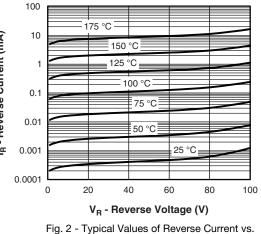
www.vishay.com

VS-10UT10, VS-10WT10FN

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Forward voltage drop		5 A	T _J = 25 °C	0.630	-	- V
		10 A		0.735	0.810	
	V _{FM} ⁽¹⁾⁽²⁾	20 A		0.840	0.890	
		5 A	T _J = 125 °C	0.530	-	
		10 A		0.615	0.660	
		20 A		0.730	0.770	
Reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	-	50	μA
		T _J = 125 °C		-	4	mA
Junction capacitance	CT	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C		400	-	pF
Series inductance	Ls	Measured lead to lead 5 mm from package body		8.0	-	nH
Maximum voltage rate of change	dV/dt	Rated V _R		-	10 000	V/µs


Notes


⁽¹⁾ Pulse width < 300 μ s, duty cycle < 2 %

⁽²⁾ Only 1 anode pin connected

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 55 to 175	°C
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	2	°C/W
Typical thermal resistance, case to heatsink	R _{thCS}		0.3	0/10
A navevine ste vusiskt			0.3	g
Approximate weight			0.01	oz.
		Case style I-PAK	10U	T10
Marking device		Case style D-PAK	10WT	10FN

Reverse Voltage

Revision: 02-Nov-11

Document Number: 94647

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

VS-10UT10, VS-10WT10FN

Vishay Semiconductors

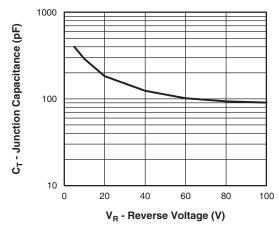


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

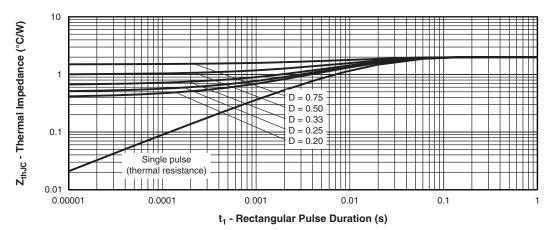
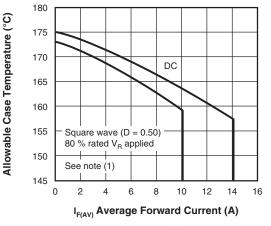
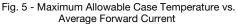




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Average Power Loss (W)

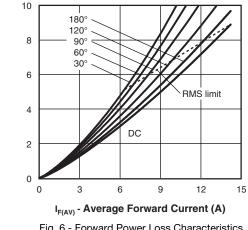
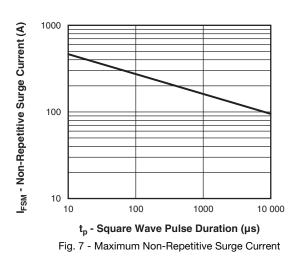


Fig. 6 - Forward Power Loss Characteristics

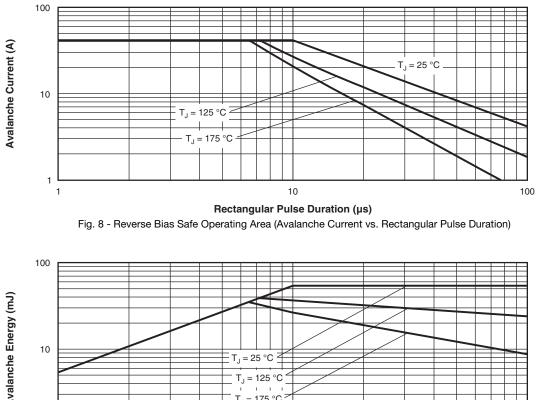
Revision: 02-Nov-11

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



www.vishay.com

VS-10UT10, VS-10WT10FN


Vishay Semiconductors

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

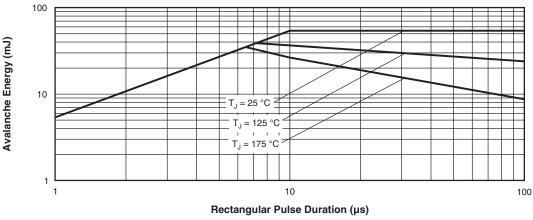
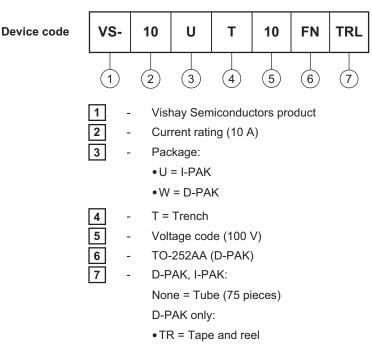


Fig. 9 - Reverse Bias Safe Operating Area (Avalanche Energy vs. Rectangular Pulse Duration)

4

Document Number: 94647

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



www.vishay.com

VS-10UT10, VS-10WT10FN

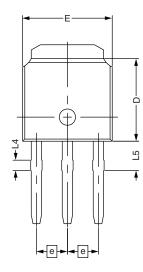
Vishay Semiconductors

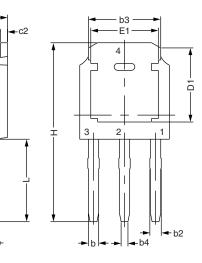
ORDERING INFORMATION TABLE

- TRL = Tape and reel (left oriented)
- TRR = Tape and reel (right oriented)

LINKS TO RELATED DOCUMENTS					
Dimensions	I-PAK (TO-251AA)	www.vishay.com/doc?95024			
Dimensions	D-PAK (TO-252AA)	www.vishay.com/doc?95448			
Part marking information	I-PAK (TO-251AA)	www.vishay.com/doc?95025			
	D-PAK (TO-252AA)	www.vishay.com/doc?95059			
Packaging information		www.vishay.com/doc?95033			
SPICE model		www.vishay.com/doc?95026			

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>




Outline Dimensions

Vishay Semiconductors

I-PAK - S

DIMENSIONS FOR I-PAK - S in millimeters

SYMBOL	DIMENSIONAL REQUIREMENTS				
STMBOL	MIN.	NOM.	MAX.		
E	6.40	6.60	6.70		
L	3.98	4.13	4.28		
L4	0.66	0.76	0.86		
L5	1.96	2.16	2.36		
D	6.00	6.10	6.20		
Н	11.05	11.25	11.45		
b	0.64	0.76	0.88		
b2	0.77	0.84	1.14		
b3	5.21	5.34	5.46		
b4	0.41	0.51	0.61		
e	2.286 BSC				
A	2.20	2.30	2.38		
С	0.40	0.50	0.60		
c2	0.40	0.50	0.60		
D1	5.30	-	-		
E1	4.40	-	-		

с

Document Number: 95024
Revision: 24-May-11For technical questions within your region, please contact one of the following:
DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.