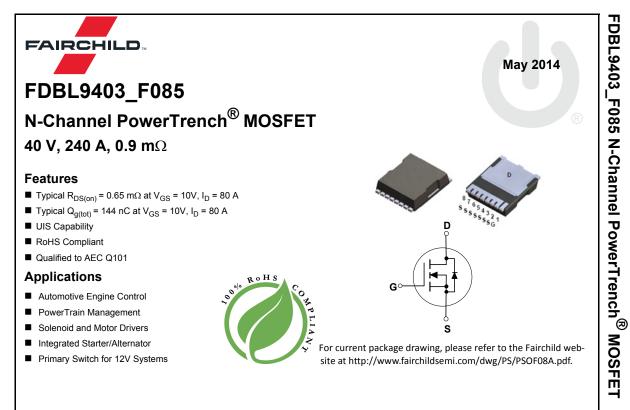


Excellent Integrated System Limited


Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDBL9403_F085

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

MOSFET Maximum Ratings T_J = 25°C unless otherwise noted.

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-to-Source Voltage		40	V
V _{GS}	Gate-to-Source Voltage		±20	V
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	240	
	Pulsed Drain Current	T _C = 25°C	See Figure 4	A
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	737	mJ
P _D	Power Dissipation		357	W
	Derate Above 25°C		2.38	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C
R _{0JC}	Thermal Resistance, Junction to Case		0.42	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	43	°C/W

Notes:

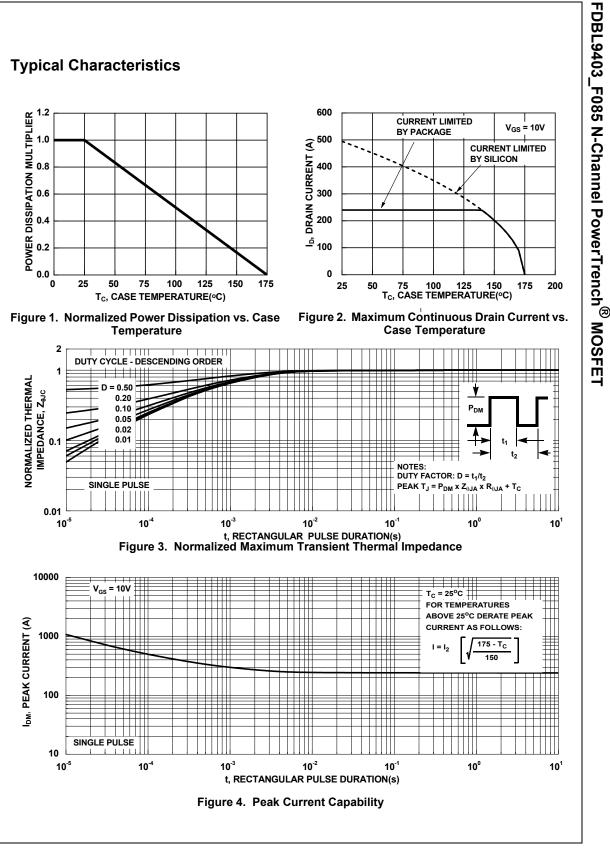
1: Current is limited by bondwire configuration.

2: Starting $T_J = 25^{\circ}C$, L = 0.36mH, $I_{AS} = 64A$, $V_{DD} = 40V$ during inductor charging and $V_{DD} = 0V$ during time in avalanche.

3: $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Package Marking and Ordering Information

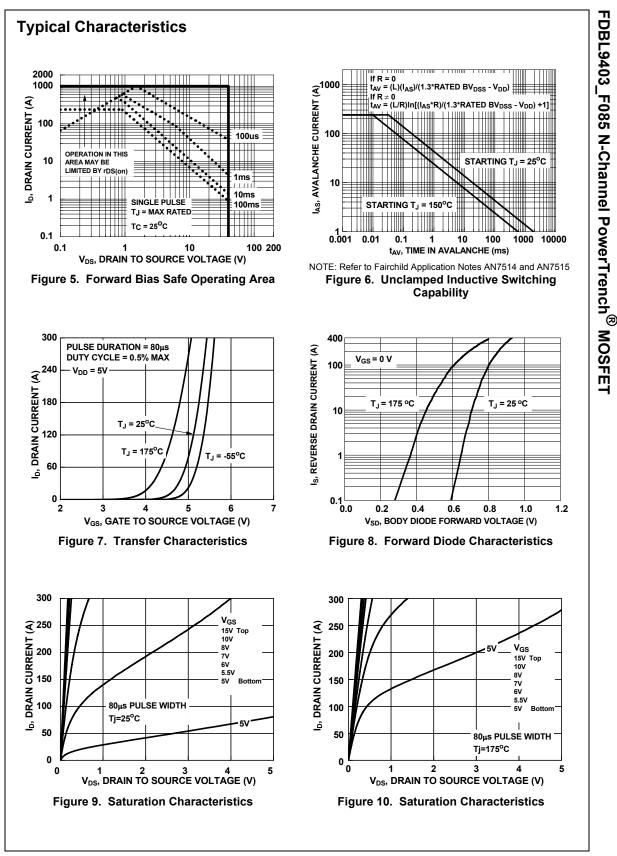
Device Marking	Device	Package			
FDBL9403	FDBL9403_F085	MO-299A	-	-	-



Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
off Cha	racteristics						
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250μA, V	V _{GS} = 0V	40	-	-	V
		V _{DS} =40V,		-	-	1	μA
DSS	Drain-to-Source Leakage Current	$V_{GS} = 0V$	$T_{\rm J} = 175^{\rm o}C$ (Note 4)	-	-	1	mA
SSS	Gate-to-Source Leakage Current	V_{GS} = ±20V		-	-	±100	nA
n Cha	racteristics						
GS(th)	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA		2.0	3.3	4.0	V
	Drain to Source On Resistance	I _D = 80A,	T _J = 25°C	-	0.65	0.90	mΩ
DS(on)		V _{GS} = 10V	$T_{\rm J}$ = 175°C (Note 4)	-	1.10	1.50	mΩ
ynami	c Characteristics						
iss	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	12000	-	pF
oss	Output Capacitance			-	3260	-	pF
rss	Reverse Transfer Capacitance			-	442	-	pF
q	Gate Resistance	f = 1MHz		-	3.3	-	Ω
g(ToT)	Total Gate Charge at 10V	V _{GS} = 0 to 1	0V V _{DD} = 32V	-	144	188	nC
g(th)	Threshold Gate Charge	$V_{GS} = 0$ to 2	V I _D = 80A	-	22	26	nC
gs	Gate-to-Source Gate Charge			-	66	-	nC
gd	Gate-to-Drain "Miller" Charge			-	16	-	nC
n on)	Turn-On Time Turn-On Delay		-	-	- 42 72	162 -	ns ns
	Rise Time	$V_{DD} = 20V,$		-	73	-	ns
(off)	Turn-Off Delay	V _{GS} = 10V,	$R_{GEN} = 0\Omega$	-	83	-	ns
	Fall Time			-	50	-	ns
ff	Turn-Off Time			-	-	279	ns
rain-S	ource Diode Characteristics						
/ _{SD}	Source-to-Drain Diode Voltage	I _{SD} =80A, V		-	-	1.25	V
	-	I _{SD} = 40A, V		-	-	1.2	V
		$I_{F} = 80A, dI_{SD}/dt = 100A/\mu s,$		-	111	129	ns
r r	Reverse-Recovery Time Reverse-Recovery Charge	V _{DD} =32V	3D		178	214	nC

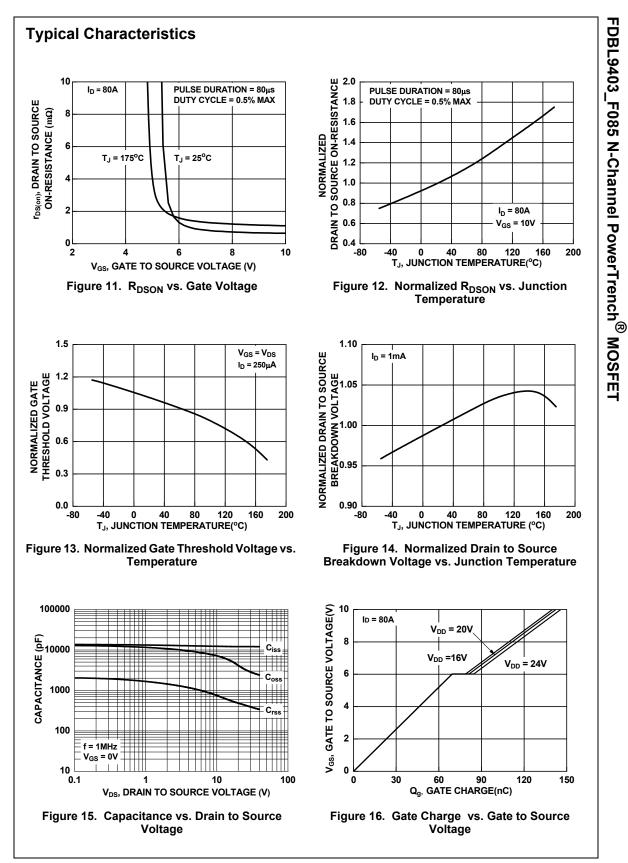
FDBL9403_F085 Rev. C1

2



FDBL9403_F085 Rev. C1

www.fairchildsemi.com



FDBL9403_F085 Rev. C1

www.fairchildsemi.com

FDBL9403_F085 Rev. C1

www.fairchildsemi.com

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDBL9403_F085 - MOSFET N-CH 40V 240A PSOF8 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

