

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SIS612EDNT-T1-GE3

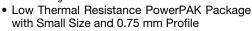
For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

SiS612EDNT

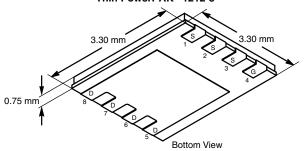

Vishay Siliconix

N-Channel 20 V (D-S) MOSFET

PRODUC	T SUMMARY		
V _{DS} (V)	R _{DS(on)} (Ω) Max.	I _D (A) ^{f, g}	Q _g (Typ.)
	0.0039 at V _{GS} = 4.5 V	50	
20	0.0042 at V _{GS} = 3.7 V	50	22.5 nC
	0.0058 at V _{GS} = 2.5 V	50	

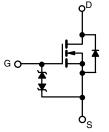
• TrenchFET® Power MOSFET

100 % R_q and UIS Tested


• Typical ESD performance 3400 V

• Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

COMPLIANT HALOGEN FREE


Ordering Information:

SiS612EDNT-T1-GE3 (Lead (Pb)-free and Halogen-free)

APPLICATIONS

FEATURES

- · Battery Switch / Load Switch
- Power Management for Tablet PCs and Mobile Computing

N-Channel MOSFET

ABSOLUTE MAXIMUM RATING	S (T _A = 25 °C, u	nless otherw	vise noted)		
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	20	V	
Gate-Source Voltage		V_{GS}	± 12	v	
	T _C = 25 °C		50 ^g		
Continuous Dunin Comment /T. 150 °C)	T _C = 70 °C] , [50 ^g		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	l _D	24.6 ^{a, b}		
	T _A = 70 °C		19.7 ^{a, b}		
Pulsed Drain Current (t = 100 μs)		I _{DM}	200	A	
0 11 0 0 1	T _C = 25 °C		43.3		
Continuous Source-Drain Diode Current	T _A = 25 °C	l _S	3.1 ^{a, b}		
Single Pulse Avalanche Current	. 04	I _{AS}	20		
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	20	mJ	
	T _C = 25 °C		52		
Mayiroura Daway Dissination	T _C = 70 °C] [33	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	3.7 ^{a, b}	vv	
	T _A = 70 °C		2.4 ^{a, b}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		
Soldering Recommendations (Peak Temperature)c, d			260	°C	

THERMAL RESISTANCE RATII	IGS				
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambienta, e	t ≤ 10 s	R _{thJA}	24	33	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	1.9	2.4	C/VV

Notes

- a. Surface mounted on 1" x 1" FR4 board.
- t = 10 s.
- LE 10 S.

 See solder profile (www.vishay.com/doc?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

 Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

 Maximum under steady state conditions is 81 °C/W.

- f. Based on T_C = 25 °C. g. Package limited.

S13-1675-Rev. A, 29-Jul-13

Document Number: 62874

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

SiS612EDNT

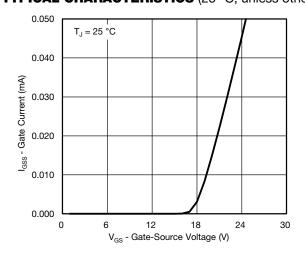
Vishay Siliconix

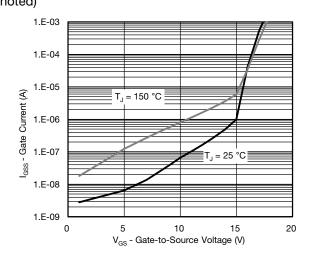
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20			V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J 050 · A		18		\//00
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA		- 3.5		mV/°C
Gate-Source Threshold Voltage	V _{GS(th})	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.5		1.2	٧
Cata Cauras Laglaga		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			± 10	- - μA
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$			± 1	
Zava Cata Valta va Dvain Cuvvant		V _{DS} = 20 V, V _{GS} = 0 V			1	
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20 V, V _{GS} = 0 V, T _J = 55 °C			10	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α
		V _{GS} = 4.5 V, I _D = 14 A		0.0032	0.0039	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 3.7 \text{ V}, I_D = 14 \text{ A}$		0.0035	0.0042	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 13 \text{ A}$		0.0041	0.0058	
Forward Transconductancea	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 14 \text{ A}$		50		S
Dynamic ^b					•	
Input Capacitance	C _{iss}			2060		pF
Output Capacitance	Coss	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		558		
Reverse Transfer Capacitance	C _{rss}			365		
Total Cata Chausa	Q _g Q _{gs} Q _{gd}	V _{DS} = 10 V, V _{GS} = 10 V, I _D = 20 A		46	70	nC
Total Gate Charge				22.5	34	
Gate-Source Charge		$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$		4.1		
Gate-Drain Charge				5.3		
Gate Resistance	Rg	f = 1 MHz	0.2	1	2	Ω
Turn-On Delay Time	t _{d(on)}			16	24	
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_L = 1 \Omega$		65	98	
Turn-Off DelayTime	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		40	60	
Fall Time	t _f			12	20	
Turn-On Delay Time	t _{d(on)}			9	18	ns
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_{L} = 1 \Omega$		5	10	
Turn-Off DelayTime	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		34	51	
Fall Time	t _f			4	8	1
Drain-Source Body Diode Characteristic	s				•	
Continuous Source-Drain Diode Current	Is	T _C = 25 °C			50	
Pulse Diode Forward Current (t = 100 μs)	I _{SM}				200	A
Body Diode Voltage	V _{SD}	I _S = 10 A, V _{GS} = 0 V		0.75	1.2	V
Body Diode Reverse Recovery Time	t _{rr}			22	44	ns
Body Diode Reverse Recovery Charge	Q _{rr}	1 40 A 11/11 400 A / T 07 00		10	20	nC
Reverse Recovery Fall Time	t _a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$		11		
Reverse Recovery Rise Time	t _b			11		ns

Notes

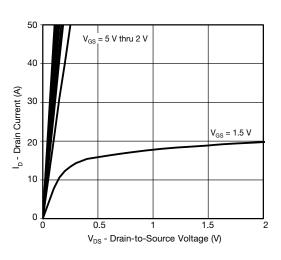
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

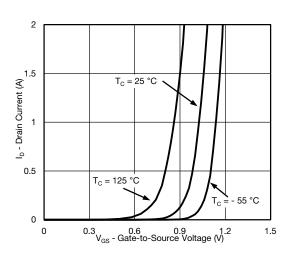
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

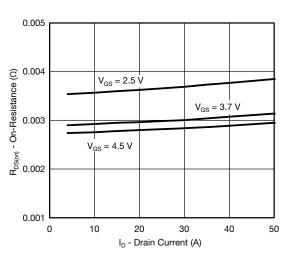

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

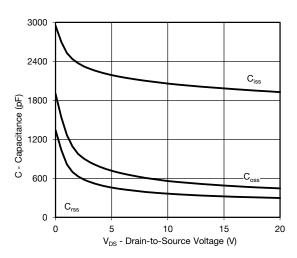
SiS612EDNT


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Vishay Siliconix


Gate Current vs. Gate-to-Source Voltage


Gate Current vs. Gate-to-Source Voltage

Output Characteristics

Transfer Characteristics

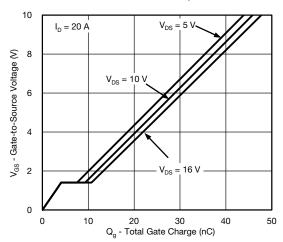
On-Resistance vs. Drain Current and Gate Voltage

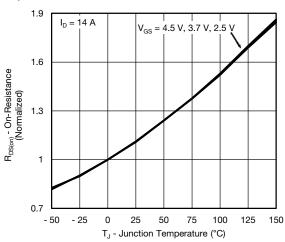
Capacitance

S13-1675-Rev. A, 29-Jul-13 3 Document Number: 62874

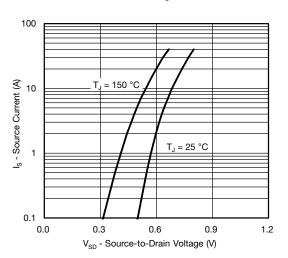
Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

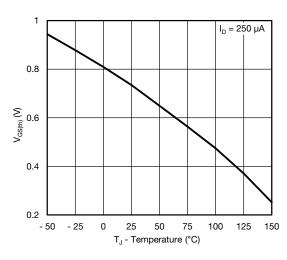


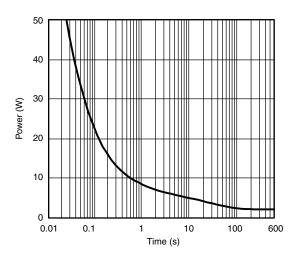

www.vishay.com

SiS612EDNT


Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Gate Charge


On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

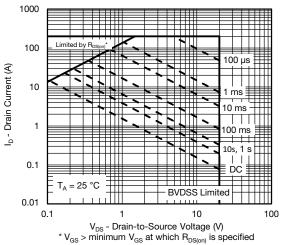
On-Resistance vs. Gate-to-Source Voltage

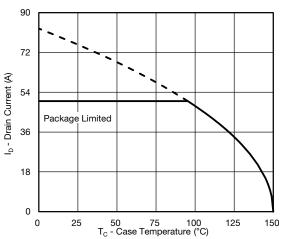
Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

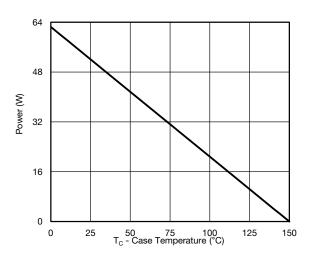
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com




www.vishay.com

SiS612EDNT

Vishay Siliconix

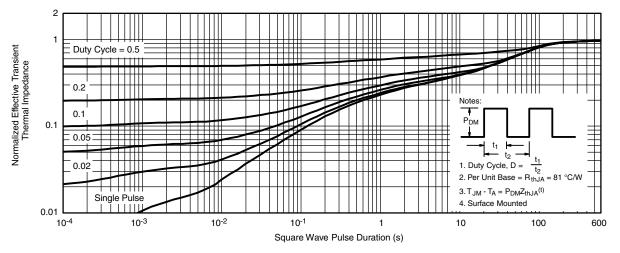

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

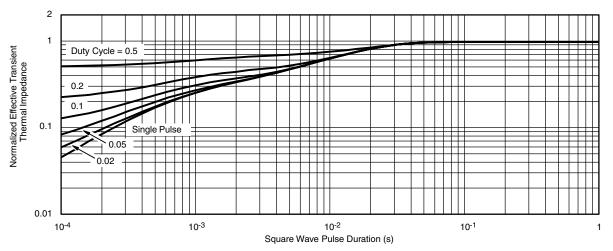
Safe Operating Area

Power, Junction-to-Case

^{*} The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


SiS612EDNT

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

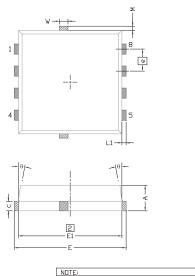
Normalized Thermal Transient Impedance, Junction-to-Case

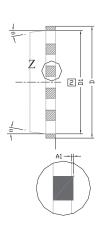
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62874.

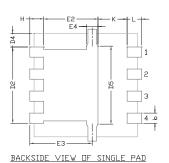
DWG: 6012

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com




Package Information

Vishay Siliconix

PowerPAK® 1212-8T

	II E-
1.	MILIMETER WILL GOVERN
	DIMENSIONS EXCLUSIVE OF MOLD GATE BURRS.
3	DIMENSIONS EXCLUSIVE OF MOLD FLASH AND CUTTING BURRS.

	MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	-	0.05	0.000	-	0.002
b	0.23	0.30	0.41	0.009	0.012	0.016
С	0.23	0.28	0.33	0.009	0.011	0.013
D	3.20	3.30	3.40	0.126	0.130	0.134
D1	2.95	3.05	3.15	0.116	0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
D3	0.48	-	0.89	0.019	-	0.035
D4		0.47 TYP.			0.0185 TYP.	
D5	2.3 TYP. 0.090 TYP.				0.090 TYP.	
Е	3.20	3.30	3.40	0.126	0.130	0.134
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	1.75	1.85	1.98	0.069	0.073	0.078
E4		0.34 TYP.			0.013 TYP.	
е		0.65 BSC			0.026 BSC	
K		0.86 TYP.		0.034 TYP.		
K1	0.35	-	-	0.014	-	-
Н	0.30	0.41	0.51	0.012	0.016	0.020
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
θ	0°	-	12°	0°	-	12°
W	0.15	0.25	0.36	0.006	0.010	0.014
М	0.125 TYP.				0.005 TYP.	

Revison: 18-Feb-13 Document Number: 62836 1

Datasheet of SIS612EDNT-T1-GE3 - MOSFET N-CH 20V 50A SMT

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Disclaimer

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000