Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

"
punnam|
L

ectronic components

-

Excellent Integrated System Limited
Stocking Distributor
Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics
STM32L062K8T6

For any questions, you can email us directly:

sales@integrated-circuit.com

http://www.integrated-circuit.com/manufacturers/Stmicroelectronics.html
http://www.integrated-circuit.com/manufacturers/Stmicroelectronics.html
http://www.integrated-circuit.com/tag/STM32L062K8T6.html
http://www.integrated-circuit.com/tag/STM32L062K8T6.html
mailto:sales@integrated-circuit.com
mailto:sales@integrated-circuit.com

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
lll;;lll

o

g

.f
72

electronic compot

ﬁ PM0223
’l life.augmented

Programming manual
STM32L0 Series Cortex®-M0+ programming manual

Introduction

This programming manual provides information for application and system-level software
developers. It gives a full description of the STM32L0 Cortex®-M0+ processor programming
model, instruction set and core peripherals.

The STM32L0 Cortex®-M0+ processor is a high performance 32-bit processor designed for
the microcontroller market. It offers significant benefits to developers, including:

e Outstanding processing performance combined with fast interrupt handling

e Enhanced system debug with extensive breakpoint

e Efficient processor core, system and memories

e Ultra-low power consumption with integrated sleep modes

e Platform security

Table 1. Applicable products

Type Part numbers

Microcontrollers STM32L0 Series

April 2014 DocID025763 Rev 1 1/110

www.st.com

g [punnam
o

P"

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Contents PM0223
Contents
1 About thisdocument i 8
1.1 Typographical conventions 8
1.2 List of abbreviations forregisters L. 8
1.3 About the STM32L0 Cortex-MO+ processor and core peripherals 9
1.31 System-levelinterface 10
1.3.2 Integrated configurabledebug 10
1.3.3 STM32L0 Cortex-MO+ processor features summary 10
1.34 STM32L0 Cortex-MO+ core peripherals 11
2 The STM32L0 Cortex-MO+ Processorccoiiiinnnnnnn. 12
2.1 Programmers model e 12
211 Processor modes and privilege levels for software execution 12
21.2 StACKS . . 12
21.3 Coreregisters e 13
214 Exceptionsandinterrupts 18
21.5 Datatypeso 19
21.6 The Cortex Microcontroller Software Interface Standard 19
2.2 Memory model 20
2.2.1 Memory regions, types and attributes 20
222 Memory system ordering of memory accesses 21
223 Behaviorof memory accesses 22
224 Additional memory access constraints for caches and shared memory 23
225 Software ordering of memory accesses 23
2.2.6 Memory endianness 24
2.3 Exceptionmodel e 26
2.3.1 Exceptionstates 26
2.3.2 Exceptiontypes 26
2.3.3 Exception handlers 28
234 Vectortable 29
235 Exception priorities 30
2.3.6 Exceptionentryandreturn 30
2.4 Faulthandling 33
241 LoCKUD ..o e 33
2/110 DoclD025763 Rev 1 ‘7

T = £ Distributor of STMicroelectronics: Excellent Integrated System Limited
== = Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
T.L..T'.n Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 Contents
25 Power management 33

2.5.1 Enteringsleepmode 34

252 Wakeup fromsleepmode 34

253 The external eventinput 35

254 Power management programming hints 35

3 The STM32L0 Cortex-MO0+ Instruction Set 36
3.1 Instruction setsummary 36

3.2 Intrinsic functions 39

3.3 About the instruction descriptions L. 40

3.31 Operands 40

3.3.2 Restrictions whenusingPCorSP 40

3.3.3 ShiftOperations e 40

3.34 Address alignment 42

3.3.5 PC-relative expressions 42

3.3.6 Conditional execution 43

3.4 Memory access instructions L. 45

3.4.1 ADR . 46

3.4.2 LDR and STR, immediate offset 47

3.4.3 LDR and STR, registeroffset, 48

344 LDR, PC-relative 49

3.4.5 LDM and STM e 50

3.4.6 PUSHand POP e 52

3.5 General data processing instructions 53

3.5.1 ADC, ADD, RSB, SBC,andSUB 54

3.5.2 AND, ORR, EOR,andBIC i 56

3.5.3 ASR,LSL,LSR,andROR 57

3.54 CMPand CMN e 59

355 MOV and MVN 60

3.5.6 MULS . . 61

3.5.7 REV,REV16,and REVSH 62

3.5.8 SXT and UXT e 63

3.5.9 TS 64

3.6 Branch and control instructions L. 65

3.6.1 B,BL,BX,and BLX 66

3.7 Miscellaneous instructions 68

ﬁ DoclD025763 Rev 1 3/110

T = £ Distributor of STMicroelectronics: Excellent Integrated System Limited
== = Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
T.L..T'.n Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Contents PM0223
3.7.1 BKPT . 69

3.7.2 CPS 70

3.7.3 DMB . .. 71

3.74 DSB . 72

3.75 OB . 73

3.7.6 MRS . 74

3.7.7 MR 75

3.7.8 NOP 76

3.7.9 SEV 77

3710 SV . 78

3741 WEE . 79

3712 W 80

4 STM32L0 Core Peripherals i, 81
4.1 About the STM32L0 core peripherals 81

4.2 Nested Vectored Interrupt Controller 82

4.2.1 Accessing the STM32L0 Cortex-MO0+ NVIC registers using CMSIS ... 82

4.2.2 Interrupt Set-enable Register 83

423 Interrupt Clear-enable Register 83

424 Interrupt Set-pending Register L. 84

4.2.5 Interrupt Clear-pending Register 84

4.2.6 Interrupt Priority Registers 85

4.2.7 Level-sensitive and pulse interrupts L. 86

4.2.8 NVIC usage hintsandtips 87

4.3 System ControlBlock 88

4.3.1 The CMSIS mapping of the STM32L0 Cortex-MO+ SCB registers 88

4.3.2 CPUID Register e 88

4.3.3 Interrupt Control and State Register ICSR) 89

4.3.4 Vector Table Offset Register 91

4.3.5 Application Interrupt and Reset Control Register 91

4.3.6 System Control Register 92

4.3.7 Configuration and Control Register 93

4.3.8 System Handler Priority Registers 94

4.3.9 SCBusagehintsand tips............ 95

4.4 SysTick timer (STK) 95

441 SysTick Control and Status Register (STK_CSR) 96

442 SysTick Reload Value Register (STK RVR) 96

4/110 DoclD025763 Rev 1 ﬁ

3

= - = £ Distributor of STMicroelectronics: Excellent Integrated System Limited
== = Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
ﬁ‘lliul‘-‘” Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
PM0223 Contents
443 SysTick Current Value Register (STK_CVR) 97
444 SysTick Calibration Value Register (STK_CALIB) 97
44.5 SysTick usage hintsand tips 98
4.5 Memory Protection Unit 98
451 MPU Type Register i 99
45.2 MPU Control Register i 100
45.3 MPU Region Number Register 101
454 MPU Region Base Address Register 102
455 MPU Region Attribute and Size Register 103
4.5.6 MPU access permission attributes L. 104
45.7 MPU mismatch 105
45.8 Updatingan MPU region 105
45.9 MPU design hintsand tips L. 107
4.6 /O POt . 108
5 Revision history i 109

DocID025763 Rev 1 5/110

T = £ Distributor of STMicroelectronics: Excellent Integrated System Limited
ELﬁ‘.‘ E _——__ Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
-m.i..:f:-] Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
List of tables PM0223

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

Table 12.

Table 13.
Table 14.
Table 15.

Table 16.
Table 17.

Table 18.

Table 19.

Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.

6/110

Applicable products e 1
Summary of processor mode, execution privilege level, and stack use options. 13
Coreregister set summary e 13
PSR register combinations 15
APSR bit assignment 15
IPSR bit assignments 16
EPSR bitassignments 16
PRIMASK register bit assignments. 17
Control register bitassignments 18
Ordering of memory accesses(1)ot e 22
Memory access behavior e 22
Memory region shareability and cache policies 23
Properties of the different exceptiontypes L i 27
Exception return behavior. L 32
STM32L0 Cortex-MO+ instructions e 36
CMSIS intrinsic functions to generate some STM32L0 Cortex-MO+ instructions. 39
CMSIS intrinsic functions to access the special registers. 39
Condition code SUffiXeS. e 44
Memory access inStructions 45
Data processing instructions. e 53
ADC, ADD, RSB, SBC and SUB operand restrictions 55
Branch and control instructions 65
BranCh ranges 66
Miscellaneous inStructions e 68
Core peripheral register regions 81
NVIC register sUmMmMary e e 82
CMSIS access NVIC fuNClionsot e e 82
NVIC IPRx bitassignments e i 85
CMSIS functions for NVIC control e e 87
Summary of the SCBregisters. i e 88
ICSR bitassignments 90
System fault handler priority fields 94
System timer registers summary 95
Memory attributes summary 99
MPU registers summary 99
Example SIZE field values 104
C,B,and S encoding e 105
AP encoding 105
Memory region attributes for a microcontroller. L. 107
Document revision history 109

3

DocID025763 Rev 1

T = £ Distributor of STMicroelectronics: Excellent Integrated System Limited
EL—‘-.‘ E _——:~= Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
.m.i.;??-.\ Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
PM0223 List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

3

STM32L0 Cortex-MO+ implementation. 9
Processor core registers. 13
APSR, IPSR and EPSR bitassignments 15
Control bit assignment 18
MemoOry Map. . ..o 20
Little-endian format example 25
Vectortable. 29
Stack frame. 31
AS RS 41
LS RS . . o 41
I X 42
ROR B3, 42
Example of SRD USE 106

DocID025763 Rev 1 7/110

g

electronic com

o

")

\uf

Yonen

15

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

About this document PM0223

1.1

1.2

8/110

About this document

This document provides the information required for application and system-level software
development. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who
have no experience of ARM products.

Typographical conventions
The typographical conventions used in this document are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands,
file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can
enter the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Enclose replaceable terms for assembler syntax where they appear in
code or code fragments. For example:
LDRSB<cond> <Rt>, [<Rn>, #<offset>]

List of abbreviations for registers

The following abbreviations are used in register descriptions:

read/write (rw) Software can read and write to these bits.
read-only (r) Software can only read these bits.
write-only (w) Software can only write to this bit.

Reading the bit returns the reset value.
read/clear (rc_w) Software can read as well as clear this bit by writing any value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1.
Writing ‘0’ has no effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0.
Writing “1” has no effect on the bit value.

toggle (1) Software can only toggle this bit by writing ‘1’. Writing ‘0’ has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

DoclD025763 Rev 1 ‘Yl

g

electronic com

Ll

n

IOL

g

PM0223

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

72

About this document

1.3

About the STM32L0 Cortex-MO0+ processor and core
peripherals

The STM32L0 Cortex-M0O+ processor is an entry-level 32-bit ARM Cortex processor

designed for a broad range of embedded applications. It offers significant benefits to
developers, including:

A simple architecture that is easy to learn and program.
. Ultra-low power, energy-efficient operation.
. Excellent code density.

Deterministic, high-performance interrupt handling.
. Upward compatibility with Cortex-M processor family.
Platform security robustness, with optional integrated Memory Protection Unit (MPU).

Figure 1. STM32L0 Cortex-M0+ implementation

Cortex-M0+ Components
Cortex-M0+ Processor v
Debug
Interrupts _ Nested
"1 Vectored Cortex-M0+ Breakpoint & Micro Trace
Interrupt |« P processor |« » Watchpoint Buffer
Controller core Units (MTB)
(NVIC) 7y
A t
\ 4
Memory Debugger |
Protection interface [
Unit (MPU) y
t A Debug
Access
> Bus matrix Port
A A
A
v v v
AHB-Lite interface Low-latency Serial-Wire
to system peripheral I/O port debug port
MS33821V1

3

The STM32L0 Cortex-M0+ processor is built on a highly area and power optimized 32-bit
processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers
exceptional energy efficiency through a small but powerful instruction set and extensively
optimized design, providing high-end processing hardware including a single-cycle multiplier.

The STM32L0 Cortex-MO0+ processor implements the ARMv6-M architecture, which is based

on the 16-bit Thumb® instruction set and includes Thumb-2 technology. This provides the
exceptional performance expected of a modern 32-bit architecture, with a higher code
density than other 8-bit and 16-bit microcontrollers.

DocID025763 Rev 1 9/110

r
A

1"

')

= e

- '

r

g \uf

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

About this document PM0223

1.3.1

1.3.2

1.3.3

10/110

The STM32L0 Cortex-MO+ processor closely integrates a configurable Nested Vectored
Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

. Includes a Non-Maskable Interrupt (NMI).
. Provides zero jitter interrupt option.
. Provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through
the hardware stacking of registers, and the ability to abandon and restart load-multiple and
store-multiple operations. Interrupt handlers do not require any assembler wrapper code,
removing any code overhead from the ISRs. Tail-chaining optimization also significantly
reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to be rapidly powered down.

System-level interface

The STM32L0 Cortex-M0+ processor provides a single system-level interface using AMBA®
technology to provide high speed, low latency memory accesses.

The STM32L0 Cortex-MO+ processor has an optional Memory Protection Unit (MPU) that
provides fine grain memory control, enabling applications to use multiple privilege levels,
separating and protecting code, data and stack on a task-by-task basis. Such requirements
are becoming critical in many embedded applications such as automotive systems.

Integrated configurable debug

The STM32L0 Cortex-M0+ processor implements a complete hardware debug solution, with
extensive hardware breakpoint and watchpoint options. This provides high system visibility
of the processor, memory and peripherals through a <2-pin Serial Wire Debug (SWD) port>
that is ideal for microcontrollers and other small package devices.

STM32L0 Cortex-M0+ processor features summary

. Thumb instruction set with Thumb-2 Technology.

. High code density with 32-bit performance.

. User and Privileged mode execution.

. Tools and binary upwards compatible with Cortex-M processor family.
. Integrated ultra low-power sleep modes.

. Efficient code execution enabling slower processor clock or increased sleep time.
. Single-cycle 32-bit hardware multiplier.

. Zero jitter interrupt handling.

. Memory Protection Unit (MPU) for safety-critical applications.

. Low latency, high-speed peripheral 1/O port.

. A Vector Table Offset Register.

. Extensive debug capabilities.

3

DocID025763 Rev 1

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
lll;;lll

o

g

.f
72

electronic compot

PM0223 About this document

1.34 STM32L0 Cortex-M0+ core peripherals

These are:

Nested Vectored Interrupt Controller (NVIC)

The NVIC is an embedded interrupt controller that supports low latency interrupt
processing.

System Control Block

The System Control Block (SCB) is the programmers model interface to the
processor. It provides system implementation information and system control,
including configuration, control, and reporting of system exceptions.

System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time
Operating System (RTOS) tick timer or as a simple counter.

Memory Protection Unit

The Memory Protection Unit (MPU) improves system reliability by defining the

memory attributes for different memory regions. It provides up to eight different
regions, and an optional predefined background region.

/0 port

The 1/O port provides single-cycle loads and stores to tightly-coupled peripherals.

3

DocID025763 Rev 1 11/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

")

g

o

g

.f
72

electronic compot

The STM32L0 Cortex-M0+ Processor PM0223
2 The STM32L0 Cortex-M0+ Processor
21 Programmers model

This section describes the STM32L0 Cortex-M0+ programmers model. In addition to the
individual core register descriptions, it contains information about the processor modes,
privilege levels for software execution, and stacks.

211 Processor modes and privilege levels for software execution

The processor modes are:

Thread mode Executes application software. The processor enters Thread mode
when it comes out of reset.

Handler mode Handles exceptions. The processor returns to Thread mode when it has
finished all exception processing.

The privilege levels for software execution are:
Unprivileged The software:

e Has limited access to system registers using the MSR and MRS
instructions, and cannot use the CPS instruction to mask interrupts.
e Cannot access the system timer, NVIC, or system control block.

e Might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

Privileged The software can use all the instructions and has access to all
resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL register on page 17. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the svc instruction to
make a Supervisor Call to transfer control to privileged software.

21.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack,
it decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with independent
copies of the stack pointer, see Stack Pointer on page 14.

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on page 17. In Handler mode, the pro-
cessor always uses the main stack. The options for processor operations are:

12/110 DoclD025763 Rev 1 ‘Yl

ws
S

electronic components

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-MO0+ Processor
Table 2. Summary of processor mode, execution privilege level, and stack use
options
Processor mode | Used to execute Privilege level f'or Stack used
software execution
Thread Applications Privileged or unprivileged(1) Main stack or process stack(")
Handler Exception handlers | Always privileged Main stack
1. See CONTROL register on page 17
21.3 Core registers

3

The processor core register are:

Figure 2. Processor core registers

RO
R1
R2
R3
R4
R5
R6 General purpose registers
R7
R8
R9
High registers R10
R11
R12 ()

N— —

Active Stack Pointer SP (R13) ——> | PSP | MSP |

Link Register LR (R14)
Program Counter PC (R15)

Low registers

Banked stack pointers

PSR Program Status Register
PRIMASK Interrupt mask register Special registers
CONTROL Control Register

MS33822V1

Table 3. Core register set summary

Name Type“) Reset value Description
R0O-R12 RW Unknown General-purpose registers on page 14.
MSP RwW See description Stack Pointer on page 14.
PSP RW Unknown Stack Pointer on page 14
LR RW Unknown Link Register on page 14
PC RW See description Program Counter on page 14
PSR RW Unknown(® Program Status Register on page 14
DocID025763 Rev 1 13/110

ws
/")

o

electronic com

IO

o

l|‘ w

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

14/110

Table 3. Core register set summary (continued)

APSR RW Unknown Application Program Status Register on page 15
IPSR RO 0x00000000 Interrupt Program Status Register on page 16
EPSR RO Unknown Execution Program Status Register on page 16
PRIMASK RW 0x00000000 Priority Mask Register on page 17

CONTROL RW 0x00000000 CONTROL register on page 17

1. Describes access type during program execution in Thread mode and Handler mode. Debug access can
differ.

2. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

General-purpose registers

R0O-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use:
e 0= Main Stack Pointer (MSP). This is the reset value.

e 1= Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000 .

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, func-
tion calls, and exceptions. On reset, the LR value is Unknown.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value of the reset vector, which is at address
0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Program Status Register

The Program Status Register (PSR) combines:
e Application Program Status Register (APSR).

e Interrupt Program Status Register (IPSR).
e Execution Program Status Register (EPSR).

These registers are allocated as mutually exclusive bitfields within the 32-bit PSR. The PSR
bit assignments are:

3

DocID025763 Rev 1

g

-
: 'l

electronic com

")

0

icnts

PM0223

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor

3

Figure 3. APSR, IPSR and EPSR bit assignments

3130292827 252423 6 5 0
APSR|N|Z([C|V Reserved
IPSR Reserved Exception number
EPSR Reserved T Reserved

MS33823V1

Access these registers individually or as a combination of any two or all three registers,
using the register name as an argument to the MSR or MRS instructions. For example:
e Read all of the registers using PSR with the MRS instruction.

e Write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 4. PSR register combinations

Register Type Combination
PSR Rw(12) APSR, EPSR, and IPSR.
IEPSR RO EPSR and IPSR.
IAPSR Rw(®) APSR and IPSR.
EAPSR Rw®) APSR and EPSR.

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions MRS on page 74 and MSR on page 75 for more information
about how to access the program status registers.

Application Program Status Register

The APSR contains the current state of the condition flags, from previous instruction execu-
tions. See the register summary in Table 3 on page 13 for its attributes. The bit assignments

are:
Table 5. APSR bit assignment
Bits Name Description
[31] N Negative flag.
[30] Z Zero flag.
[29] C Carry or borrow flag.

DocID025763 Rev 1

15/110

g

electronic com

The STM32L0 Cortex-M0+ Processor

o

")

\uf

Yonen

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMo0223

16/110

Table 5. APSR bit assignment (continued)

Bits Name Description
[28] \% Overflow flag.
[27:0] Reserved.

See The condition flags on page 43 for more information about the APSR negative, zero,
carry or borrow, and overflow flags.

Interrupt Program Status Register

The IPSR contains the exception number of the current Interrupt Service Routine (ISR). See
the register summary in Table 3 on page 13 for its attributes. The bit assignments are:

Table 6. IPSR bit assignments

Bits Name Function
[31:6] - Reserved
[5:0] Exception number | This is the number of the current exception:

0 = Thread mode.

1 = Reserved.

2 = NML.

3 = HardFault.

4-10 = Reserved.

11 = SVCall.

12, 13 = Reserved.

14 = PendSV.

15 = SysTick | Reserved.
16 = IRQO.

47 = IRQ31.
48-63 = Reserved.
see Exception types on page 26 for more information.

Execution Program Status Register

The EPSR contains the Thumb state bit.
See the register summary in Table 3 on page 13 for the EPSR attributes. The bit assign-

ments are:
Table 7. EPSR bit assignments
Bits Name Function
[31:25] Reserved.
[24] Thumb state bit.
[23:0] Reserved.

DocID025763 Rev 1

3

ws
Ll

electronic com

PM0223

yonen

o

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor

3

Attempts by application software to read the EPSR directly using the MRS instruction always
return zero. Attempts to write the EPSR using the MRS instruction are ignored. Fault han-
dlers can examine the EPSR value in the stacked PSR to determine the cause of the fault.
See Exception entry and return on page 30. The following can clear the T bit to O:

e Instructions BLX, BX and POP{PC}.

e Restoration from the stacked xPSR value on an exception return.
e Bit[0] of the vector value on an exception entry.

Attempting to execute instructions when the T bit is 0 results in a HardFault or Lockup. See
2.4.1: Lockup on page 33 for more information.

Interruptible-restartable instructions

The interruptible-restartable instructions are LDM and STM, PUSH, POP, and MULS. When
an interrupt occurs during the execution of one of these instructions, the processor
abandons execution of the instruction. After servicing the interrupt, the processor restarts
execution of the instruction from the beginning.

Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks or code sequences requiring
atomicity.

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS instruc-
tion, to change the value of PRIMASK. 3.7.6: MRS on page 74, 3.7.7: MSR on page 75, and
3.7.2: CPS on page 70 for more information.

Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See
the register summary in Table 3 on page 13 for its attributes. The bit assignments are:

Table 8. PRIMASK register bit assignments

Bits Name Function
[31:1] - Reserved.
[0] PM Prioritizable interrupt mask:
0 = No effect.
1 = Prevents the activation of all exceptions with configurable priority.

CONTROL register
The CONTROL register controls the stack used, and the privilege level for software execu-

tion, when the processor is in Thread mode. See the register summary in Table 3 on
page 13 for its attributes. The bit assignments are:

DocID025763 Rev 1 17/110

& [ymnnnm

e Distributor of STMicroelectronics: Excellent Integrated System Limited
= Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP

== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

Note:

214

18/110

Figure 4. Control bit assignment

31

Reserved

MS33824V1

Table 9. Control register bit assignments

Bits

Name

Function

[31:2]

Reserved.

(1]

SPSEL

Defines the current stack:

0 = MSP is the current stack pointer.

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

[0]

nPRIV

Defines the Thread mode privilege level:
0 = Privileged.
1 = Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active
stack pointer bit of the CONTROL register when in Handler mode. The exception entry and
return mechanisms automatically update the CONTROL register.

In an OS environment, it is recommended that threads running in Thread mode use the pro-
cess stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to
the PSP, use the MSR instruction to set the active stack pointer bitto 1, 3.7.6: MRS on

page 74

When changing the stack pointer, software must use an ISB instruction immediately after the
MSR instruction. This ensures that instructions after the ISB execute using the new stack
pointer. See 3.7.5: ISB on page 73.

Exceptions and interrupts

The STM32L0 Cortex-M0+ processor supports interrupts and system exceptions. The pro-
cessor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all excep-
tions. An interrupt or exception changes the normal flow of software control. The processor
uses Handler mode to handle all exceptions except for reset. See Exception entry on

page 31 and Exception return on page 32 for more information.

The NVIC registers control interrupt handling. See 4.2: Nested Vectored Interrupt Controller
on page 82 for more information.

3

DocID025763 Rev 1

=4[LLLLLT
f

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor

2.1.6

Note:

3

Data types

The processor:
e Supports the following data types:

— 32-bit words.
— 16-bit halfwords.
— 8-bit bytes.
e Manages all data memory accesses as little-endian or big-endian. Instruction memory

and Private Peripheral Bus (PPB) accesses are always little-endian. See 2.2.1:
Memory regions, types and attributes on page 20 for more information.

The Cortex Microcontroller Software Interface Standard

ARM provides the Cortex Microcontroller Software Interface Standard (CMSIS) for program-
ming STM32L0 Cortex-M0+ microcontrollers. The CMSIS is an integrated part of the device
driver library. For a STM32L0 Cortex-M0+ microcontroller system, CMSIS defines:

e A common way to:

— Access peripheral registers.
— Define exception vectors.
e The names of:
— The registers of the core peripherals.
— The core exception vectors.
e A device-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the
STM32L0 Cortex-MO+ processor. It also includes optional interfaces for middleware compo-
nents comprising a TCP/IP stack and a Flash file system.

The CMSIS simplifies software development by enabling the reuse of template code, and
the combination of CMSIS-compliant software components from various middleware ven-
dors. Software vendors can expand the CMSIS to include their peripheral definitions and

access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descrip-
tions of the CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these
differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e 2.5.4: Power management programming hints on page 35

e 3.2: Intrinsic functions on page 39
e 4.2.1: Accessing the STM32L0 Cortex-M0O+ NVIC registers using CMSIS on page 82
e NVIC programming hints on page 87

DocID025763 Rev 1 19/110

g

electronic com

n

'l.
(ol

.f
72

|

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IOL

The STM32L0 Cortex-M0+ Processor PM0223

2.2

2.2.1

20/110

Memory model

This section describes the processor memory map and the behavior of memory accesses.
The processor has a fixed memory map that provides up to 4GB of addressable memory.
The memory map is:

Figure 5. Memory map

OxFFFFFFFF

Device 511MB
0xE0100000
Private peripheral bus 1MB OxXEOOFFFFF
0xE0000000
OxDFFFFFFF

External device 1.0GB
0xA0000000
Ox9FFFFFFF

External RAM 1.0GB
0x60000000
Ox5FFFFFFF

Peripheral 0.5GB
0x40000000
Ox3FFFFFFF

SRAM 0.5GB
0x20000000
Ox1FFFFFFF

Code 0.5GB
0x00000000

MS33825V1

The processor reserves regions of the Private Peripheral Bus (PPB) address range for core
peripheral registers, see 1.3: About the STM32L0 Cortex-M0+ processor and core peripher-
als on page 9.

Memory regions, types and attributes
The memory map and the programming of the MPU splits into regions. Each region has a

defined memory type, and some regions have additional memory attributes. The memory
type and attributes determine the behavior of accesses to the region.

DoclD025763 Rev 1 KYI

g

o

electronic com

")

\uf

Yonen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-MO0+ Processor

The memory types are:

Normal The processor can re-order transactions for efficiency, or
perform speculative reads.

Device The processor preserves transaction order relative to other
transactions to Device or Strongly-ordered memory.

Strongly-ordered The processor preserves transaction order relative to all other
transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the

memory system can buffer a write to Device memory, but must not buffer a write to Strongly-

ordered memory.

The additional memory attributes include.

Shareable For a shareable memory region, the memory system provides
data synchronization between bus masters in a system with
multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory
region, software must ensure data coherency between the
bus masters.

<This description is required only if the device is likely to be
used in systems where memory is shared between multiple
processors.>

Execute Never (XN) Means the processor prevents instruction accesses. A
HardFault exception is generated on executing an instruction
fetched from an XN region of memory.

222 Memory system ordering of memory accesses

3

For most memory accesses caused by explicit memory access instructions, the memory
system does not guarantee that the order in which the accesses complete matches the pro-
gram order of the instructions, providing any re-ordering does not affect the behavior of the
instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, software must insert a memory barrier instruction
between the memory access instructions, see 2.2.2: Memory system ordering of memory
accesses on page 21.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs
before A2 in program order, the ordering of the memory accesses caused by two instruc-
tions is:

DocID025763 Rev 1 21/110

g

IOL

.f
72

.,..,,
3 'm"..lf

electronic com

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223
Table 10. Ordering of memory accesses!!)
A2 Normal Device access Strongly-
ordered
Al access Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <
MS33826V1
1. - Means that the memory system does not guarantee the ordering of the accesses
< Means that accesses are observed in program order, that is A1 is always observed before A2.
223 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:
Table 11. Memory access behavior(!)
Address range Memory region Memory type XN Description
0x00000000— Executable region for
Normal - program code. You can
0x1FFFFFFF
also put data here.
0%20000000— Executable region for
Normal - data. You can also put
0x3FFFFFFF
code here.
0340000000~ Peripheral Device XN External device memory.
0x5FFFFFFF
0x60000000- External RAM Normal) Executable region for
0x9FFFFFFF data.
03A0000000~ External device Device XN External device memory.
OxDFFFFFFF
This region includes the
0xE0000000 Private Peripheral NVIC, System timer, and
* P Strongly- ordered | XN System Control Block.
O0XEOOFFFFF
Only word accesses can
be used in this region.
1. See Memory regions, types and attributes on page 20 for more information.
The Code, SRAM, and external RAM regions can hold programs.
The MPU can override the default memory access behavior described in this section. For
more information, see 4.5: Memory Protection Unit on page 98.
22/110 DoclD025763 Rev 1 Kyy

g

electronic com

")

-
: 'l

Yonen

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

is

PM0223 The STM32L0 Cortex-M0+ Processor
224 Additional memory access constraints for caches and shared memory
When a system includes caches or shared memory, some memory regions have additional
access constraints, and some regions are subdivided, as Table 12 shows:
Table 12. Memory region shareability and cache policies
Address range Memory region Memory typem Shareability“) Cache policy(z)
0300000000~ Code Normal - WT
0x1FFFFFFF
0:20000000- | gpay Normal - WBWA
0x3FFFFFFF
040000000~ Peripheral Device - -
0x5FFFFFFF
0x60000000- WBWA
0x7FFFFFFF
External RAM Normal -
0x80000000- WT
0x9FFFFFFF
0320000000~ Shareable
0xBFFFFFFF
External device Device -
0xC0000000-
Non-shareable
0xDFFFFFFF
0xE0000000- Private Peripheral Strongly- ordered | Shareable .
0XEOOFFFFF Bus
0xE0100000- . .
Device Device - -
O0xFFFFFFFF
1. See 2.2.1: Memory regions, types and attributes on page 20 for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate.
225 Software ordering of memory accesses

3

The order of instructions in the program flow does not always guarantee the order of the cor-
responding memory transactions. This is because:
e The processor can reorder some memory accesses to improve efficiency, providing this

does not affect the behavior of the instruction sequence.

e Memory or devices in the memory map might have different wait states.
e Some memory accesses are buffered or speculative.

Memory system ordering of memory accesses on page 21 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of mem-
ory accesses is critical, software must include memory barrier instructions to force that
ordering. The processor provides the following memory barrier instructions:

DocID025763 Rev 1

23/110

g

o

electronic com

")

\uf

Yonen

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

2.2.6

24/110

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding
memory transactions complete before subsequent memory transactions.
See DMB on page 71.

DSB The Data Synchronization Barrier (DSB) instruction ensures that
outstanding memory transactions complete before subsequent
instructions execute. See DSB on page 72.

1SB The Instruction Synchronization Barrier (ISB) ensures that the effect of all
completed memory transactions is recognizable by subsequent
instructions. See ISB on page 73.

The following are examples of using memory barrier instructions:

Vector table

Self-modifying code

Memory map switching

MPU programming

VTOR programming

If the program changes an entry in the vector table, and then
enables the corresponding exception, use a DMB instruction
between the operations. This ensures that if the exception is
taken immediately after being enabled the processor uses the
new exception vector.

If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This
ensures subsequent instruction execution uses the updated
program.

If the system contains a memory map switching mechanism, use
a DSB instruction after switching the memory map. This ensures
subsequent instruction execution uses the updated memory map

Use a DSB followed by an ISB instruction or exception return to
ensure that the new MPU configuration is used by subsequent
instructions.

If the program updates the value of the VTOR, use a DMB
instruction to ensure that the new vector table is used for
subsequent exceptions.

Memory accesses to Strongly-ordered memory, such as the System Control Block, do not
require the use of DMB instructions.

Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word. Little-endian format describes how words of data are stored in memory.

Little-endian format

In little-endian format, the processor stores the least significant byte (Isbyte) of a word at the
lowest-numbered byte, and the most significant byte (msbyte) at the highest-numbered

byte. For example:

3

DocID025763 Rev 1

|

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

]
LT
.

electronic components

PM0223 The STM32L0 Cortex-M0+ Processor

Figure 6. Little-endian format example

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2| B2

A+3| B3 [msbyte

MS33827V1

3

DocID025763 Rev 1 25/110

g

electronic com

")

o

3

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

\uf

anents

The STM32L0 Cortex-MO0+ Processor PM0223
2.3 Exception model

This section describes the exception model.
2.31 Exception states

Each exception is in one of the following states:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change
the state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not com-
pleted.

Note: An exception handler can interrupt the execution of another exception
handler. In this case both exceptions are in the active state.

Active and pending The exception is being serviced by the processor and there is a pend-
ing exception from the same source.

2.3.2 Exception types

The exception types are:

Reset Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted,
the operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMls
cannot be:

e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.

HardFault A HardFault is an exception that occurs because of an error during
normal or exception processing. HardFaults have a fixed priority of -1,
meaning they have higher priority than any exception with
configurable priority.

SVCall A Supervisor Call (SVC) is an exception that is triggered by the svc
instruction. In an OS environment, applications can use svC
instructions to access OS kernel functions and device drivers.

PendSV PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

26/110 DoclD025763 Rev 1 Kys

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

onents

electronic com

PM0223 The STM32L0 Cortex-M0+ Processor

SysTick A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In
an OS environment, the processor can use this exception as system

tick.

Interrupt (IRQ) An interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are asynchronous to
instruction execution. In the system, peripherals use interrupts to

communicate with the processor.

Table 13. Properties of the different exception types

3

Eﬁ;eg:r%'; nurLRbC;r“) | Exception type Priority ac}:;(:sosr(z) Activation
1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 HardFault -1 0x0000000C Synchronous
4-10 - Reserved - - -
11 -5 SVcCall Configurable(3) 0x0000002C Synchronous
12-13 - Reserved - - -
14 -2 PendSV Configurable(3) 0x00000038 Asynchronous
15 -1 SysTick Configurable® | 0x0000003c Asynchronous
15 - Reserved - - -
16 and above | 0 and above | Interrupt (IRQ) Configurable(®) zigozgggi?@ Asynchronous

1. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions
other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status Register on

page 16

See Figure 7.: Vector table on page 29 for more information.

See 4.2.6: Interrupt Priority Registers on page 85

Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute additional
instructions between when the exception is triggered and when the processor enters the
exception handler.

Privileged software can disable the exceptions that Table 13 on page 27 shows as having

configurable priority, see 4.2.3: Interrupt Clear-enable Register on page 83.
For more information about HardFaults, see 2.4: Fault handling on page 33

DocID025763 Rev 1

27/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
= Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
p—— --n:pn-“-nh Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

g
lll;;lll

The STM32L0 Cortex-M0+ Processor PM0223

2.3.3 Exception handlers

The processor handles exceptions using:

Interrupt Service Routines (ISRs) Interrupts IRQO to IRQ31 are the exceptions handled by

ISRs
Fault handler HardFault is the only exception handled by the fault
handler.
System handlers NMI, PendSV, SVCall SysTick, and HardFault are all

system exceptions handled by system handlers.

28/110 DocID025763 Rev 1

3

|

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

n

g

'l.
(ol

.f
72

electronic compot

PM0223 The STM32L0 Cortex-M0+ Processor

2.3.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 7 on page 29 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1,
indicating that the exception handler is written in Thumb code.

Figure 7. Vector table

Exception number IRQ number Vector Offset
47 31 IRQ31
0xBC
18 2 IRQ2
0x48
17 1 IRQ1
0x44
16 0 IRQO
0x40
15 -1 SysTick
0x3C
14 -2 PendSV
0x38
13
Reserved
12
11 -5 SVcall
0x2C
10
9
8
7 Reserved
6
5
4
0x10
3 -13 HardFault
0x0C
2 -14 NMI
0x08
1 Reset
0x04
Initial SP value
0x00
MS33828V1

On system reset, the vector table is fixed at address 0x00000000. Privileged software can
write to the VTOR to relocate the vector table start address to a different memory location, in
the range 0x00000000 to OXxFFFFFF80 in multiples of 256 bytes, see Vector Table Offset
Register on page 4-11.

3

DocID025763 Rev 1 29/110

g

electronic com

")

-
g

IOL

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

2.3.5

Note:

2.3.6

30/110

Exception priorities

As Table 13 on page 27 shows, all exceptions have an associated priority, with:
e Alower priority value indicating a higher priority.

e Configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. For information about configuring exception priorities see
e 4.3.8: System Handler Priority Registers on page 94

o 14.2.6: Interrupt Priority Registers on page 85.

Configurable priority values are in the range 0-192, in steps of 64. The Reset, HardFault,
and NM|I exceptions, with fixed negative priority values, always have higher priority than any
other exception.

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that
IRQ[1] has higher priority than IRQ[O0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is pro-
cessed before IRQIO].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending
and have the same priority, then IRQJ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted
if a higher priority exception occurs. If an exception occurs with the same priority as the
exception being handled, the handler is not preempted, irrespective of the exception num-
ber. However, the status of the new interrupt changes to pending.

Exception entry and return

Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception can
preempt the exception handler if its priority is higher than the priority of the
exception being handled.

When one exception preempts another, the exceptions are called nested
exceptions. See Exception entry on page 31 for more information.

Return This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced.

e The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the state it
had before the interrupt occurred. See Exception return on page 32 for more
information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

3

DocID025763 Rev 1

ws
Ll

yonen

clectronic componen

PM0223

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor

3

Late-arriving This mechanism speeds up preemption. If a higher priority exception occurs
during state saving for a previous exception, the processor switches to
handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved
would be the same for both exceptions. On return from the exception handler
of the late-arriving exception, the normal tail-chaining rules apply.

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:
e The processor is in Thread mode.

e The new exception is of higher priority than the exception being handled, in which case
the new exception preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask
register, see Exception mask register on page 17. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation
is referred to as stacking and the structure of eight data words is referred to as a stack
frame. The stack frame contains the following information:

Figure 8. Stack frame

<previous> ««— SP points here before interrupt

SP + 0x1C xPSR

SP + 0x18 PC

Decreasing | oP + 0x14 LR
memory SP + 0x10 R12
address | SP + 0x0C R3
SP + 0x08 R2

SP + 0x04 R1

v SP + 0x00 RO «— SP points here after interrupt
MS33829V1

Immediately after stacking, the stack pointer indicates the lowest address in the stack
frame. The stack frame is aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in
the interrupted program. This value is restored to the PC at exception return so that the
interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from
the vector table. When stacking is complete, the processor starts executing the exception
handler. At the same time, the processor writes an EXC_RETURN value to the LR. This
indicates which stack pointer corresponds to the stack frame and what operation mode the
processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing
the exception handler and automatically changes the status of the corresponding pending
interrupt to active.

DocID025763 Rev 1 31/110

=4[LLLLLT
f

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

32/110

If another higher priority exception occurs during exception entry, the processor starts exe-
cuting the exception handler for this exception and does not change the pending status of
the earlier exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the
following instructions attempts to set the PC to an EXC_RETURN value:
e A POP instruction that loads the PC.

e B pBX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception
handler. Bits[31:4] of an EXC_RETURN value are 0xFFFFFFF. When the processor loads a
value matching this pattern to the PC it detects that the operation is a not a normal branch
operation and, instead, that the exception is complete. As a result, it starts the exception
return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and
processor mode, as Table 14 on page 32 shows.

Table 14. Exception return behavior

EXC_RETURN Description

Return to Handler mode.
OxFFFFFF1 Exception return gets state from the main stack.
Execution uses MSP after return.

Return to Thread mode.
OXFFFFFF9 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.
OxFFFFFFD Exception return gets state from PSP.
Execution uses PSP after return.

All other values Reserved.

3

DocID025763 Rev 1

g

o

electronic com

")

\uf

yonen

o
72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-MO0+ Processor
24 Fault handling
Faults are a subset of exceptions, see 2.3: Exception model on page 26. All faults result in
the HardFault exception being taken or cause Lockup if they occur in the NMI or HardFault
handler. The faults are:
e Execution of an svc instruction at a priority equal or higher than SVCall.
e Execution of a BKPT instruction without a debugger attached.
e A system-generated bus error on a load or store.
e Execution of an instruction from an XN memory address.
e Execution of an instruction from a location for which the system generates a bus fault.
e A system-generated bus error on a vector fetch.
e Execution of an Undefined instruction.
e Execution of an instruction when not in Thumb state as a result of the T-bit being
previously cleared to 0.
e An attempted load or store to an unaligned address.
e An MPU fault because of a privilege violation or an attempt to access an unmanaged
region.
Note: Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can
preempt any exception other than Reset, NMI, or another HardFauilt.
241 Lockup
The processor enters a Lockup state if a fault occurs when executing the NMI or HardFault
handlers, or if the system generates a bus error when unstacking the PSR on an exception
return using the MSP. When the processor is in Lockup state it does not execute any
instructions. The processor remains in Lockup state until one of the following occurs:
e ltisreset.
e Adebugger halts it.
e An NMI occurs and the current Lockup is in the HardFault handler.
Note: If Lockup state occurs in the NMI handler a subsequent NMI does not cause the processor
to leave Lockup state.
2.5 Power management

3

The STM32L0 Cortex-MO0+ processor sleep modes reduce power consumption:
e A sleep mode, that stops the processor clock.

e A deep sleep mode, that enters ultra low-power modes.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see 4.3.6: System Con-
trol Register on page 92. When entering the deep sleep mode, the PDSS bit in PWR_CR
register will select entry in Stop or Standby mode, see the reference manual chapter "low-
power modes" for details.

This section describes the mechanisms for entering sleep mode, and the conditions for wak-
ing up from sleep mode.

DoclD025763 Rev 1 33/110

g

electronic com

")

-
g

IOL

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor PM0223

2.5.1

2.5.2

34/110

Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes
up the processor. For this reason, software must be able to put the processor back into
sleep mode after such an event. A program might have an idle loop to put the processor
back in to sleep mode.

Wait for interrupt

The Wait For Interrupt instruction, WFI, causes immediate entry to sleep mode. When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See 3.7.12: WFI on page 80 for more information.

Wait for event

The Wait For Event instruction, WFE, causes entry to sleep mode conditional on the value of
a one-bit event register. When the processor executes a WFE instruction, it checks the value
of the event register:

0 The processor stops executing instructions and enters sleep mode.

1 The processor sets the register to zero and continues executing instructions
without entering sleep mode.

See 3.7.11: WFE on page 79 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on exe-
cution of a WFE instruction. Typically, this is because of the assertion of an external event, or
because another processor in the system has executed a SEV instruction, see 3.7.9: SEV
on page 77. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCRis set to 1, when the processor completes the execution
of an exception handler and returns to Thread mode it immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an interrupt
occurs.

Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that caused it to
enter sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK.PM
bit to 1. If an interrupt arrives that is enabled and has a higher priority than current exception
priority, the processor wakes up but does not execute the interrupt handler until the proces-
sor sets PRIMASK.PM to zero. For more information about PRIMASK, see Exception mask
register on page 17.

DoclD025763 Rev 1 ‘Yl

g

L]
lll;;lll

o

electronic compon

PM0223

\uf

72

o

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Processor

2.5.3

2.5.4

3

Wakeup from WFE

The processor wakes up if:
e It detects an exception with sufficient priority to cause exception entry.

e |t detects an external event signal, see 2.5.3: The external event input on page 35.

e In a multiprocessor system, another processor in the system executes a SEV
instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient pri-
ority to cause exception entry. For more information about the SCR, see 4.3.6: System Con-
trol Register on page 92.

The external event input

The processor provides an external event input signal. This signal can be generated by
peripherals. Tie this signal LOW if it is not used.

This signal can wakeup the processor from WFE, or set the internal WFE event register to
one to indicate that the processor must not enter sleep mode on a later WFE instruction, see
Wait for event on page 34.

Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides
the following intrinsic functions for these instructions:

void _ _WFE(void) // Wait for Event

void _ WFI(void) // Wait for Interrupt

void __SEV(void) // Send Event

DoclD025763 Rev 1 35/110

electronic com

g
¥

: 'l

.f
72

IOL

The STM32L0 Cortex-M0+ Instruction Set

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMo0223

3 The STM32L0 Cortex-M0+ Instruction Set

3.1

Instruction set summary

The processor implements a version of the Thumb instruction set. Table 15 lists the
supported instructions.

In Table 15

e Angle brackets, <>, enclose alternative forms of the operand.
e Braces, {}, enclose optional operands and mnemonic parts.
e The Operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

Table 15. STM32L0 Cortex-M0+ instructions

Mnemonic Operands Brief description Flags Section

ADCS {Rd, } Rn, Rm Add with Carry N,Z,C\V 3.5.1 on page 54.

ADD{S} {Rd, } Rn, <Rm/[#imm> |Add N,Z,C.V 3.5.1 on page 54.

ADR Rd, label PC-relative Addressto | _ 3.4.1 on page 46.
Register

ANDS {Rd, } Rn, Rm Bitwise AND N,Z 3.5.2 on page 56.

ASRS {Rd, } Rm, <Rs/[#imm> |Arithmetic Shift Right |N,Z,C 3.5.3 on page 57.

B{cc} label Branch {conditionally} |- 3.6.1 on page 66.

BICS {Rd, } Rn, Rm Bit Clear N,Z 3.5.2 on page 56.

BKPT #1imm Breakpoint - 3.7.1 on page 69.

BL label Branch with Link - 3.6.1 on page 66.

BLX R B.ranch indirect with) 3.6.1 on page 66.
Link

BX Rm Branch indirect - 3.6.1 on page 66.

CMN Rn, Rm Compare Negative N,Z,C\V 3.5.4 on page 59.

CMP Rn, <Rm|[#imm> Compare N,Z,C\V 3.5.4 on page 59.
Change Processor

CPSID 1 State, Disable - 3.7.2 on page 70.
Interrupts
Change Processor

CPSIE i State, Enable - 3.7.2 on page 70.
Interrupts

DMB - Data Memory Barrier | - 3.7.3 on page 71.

DSB ~ Datg Synchronization | 3.7.4 on page 72.
Barrier

EORS {Rd, } Rn, Rm Exclusive OR N,Z 3.5.2 on page 56.

36/110

DocID025763 Rev 1

Lys

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

onents

electronic com

PM0223 The STM32L0 Cortex-M0+ Instruction Set

Table 15. STM32L0 Cortex-MO0+ instructions (continued)

Mnemonic Operands Brief description Flags Section

Instruction
ISB - Synchronization - 3.7.5 on page 73.
Barrier

Load Multiple
LDM Rn{!}, reglist registers, increment - 3.4.5 on page 50.
after

Load Register from
LDR Rt, label PC-relative address - 3.4.2 on page 47.

Load Register with

LDR Rt, [Rn, <Rm[#imm>] word - 3.4.2 on page 47.

LDRB Rt, [Rn, <Rm|#imm>] It;;fed Register with - 3.4.2 on page 47.
, Load Register with

LDRH Rt, [Rn, <Rm/|#imm>] halfword - 3.4.2 on page 47.

LDRSB |Rt, [Rn, <Rm|#imms) |-03dRegisterwith 3.4.2 on page 47.

signed byte

. Load Register with
LDRSH Rt, [Rn, <Rm|#imm>] signed halfword - 3.4.2 on page 47.

LSLS {Rd, } Rn, <Rs/[#imm> |Logical Shift Left N,Z,C 3.5.3 on page 57.
LSRS {Rd, } Rn, <Rs/[#imm> |Logical Shift Right N,Z,C 3.5.3 on page 57.
MOV{S} Rd, Rm Move N,Z 3.5.5 on page 60.
Move to general
MRS Rd, spec_reg register from special |- 3.7.6 on page 74.
register
Move to special
MSR spec_reg, Rm register from general |[N,Z,C,V 3.7.7 on page 75.
register
MULS Rd, Rn, Rm Multiply, 32-bit result |N,Z 3.5.6 on page 61.
MVNS Rd, Rm Bitwise NOT N,Z 3.5.5 on page 60.
NOP - No Operation - 3.7.8 on page 76.
ORRS {Rd, } Rn, Rm Logical OR N,Z 3.5.2 on page 56.
POP reglist Pop registers from 3.4.6 on page 52.

stack

Push registers onto

PUSH reglist 3.4.6 on page 52.

stack
REV Rd, Rm Byte-Reverse word - 3.5.7 on page 62.
REV16 Rd, Rm Byte-Reverse packed 3.5.7 on page 62.

halfwords

Byte-Reverse signed
halfword

RORS {Rd, } Rn, Rs Rotate Right N,Z,C 3.5.3 on page 57.

REVSH Rd, Rm 3.5.7 on page 62.

3

DocID025763 Rev 1 371110

g

electronic compone

v

nt

5

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PM0223
Table 15. STM32L0 Cortex-MO0+ instructions (continued)

Mnemonic Operands Brief description Flags Section

RSBS {Rd, } Rn, #0 Reverse Subtract N,Z,C,V 3.5.1 on page 54.

SBCS {Rd, } Rn, Rm Subtract with Carry N,Z,C.V 3.5.1 on page 54.

SEV - Send Event - 3.7.9 on page 77.
Store Multiple

STM Rn!, reglist registers, increment |- 3.4.5 on page 50.
after

STR RE, [Rn, <Rm|#imm>] ifrr; Register as - 3.4.2 on page 47.

STRB Rt, [Rn, <Rm|#imm>] |Store Register as byte |- 3.4.2 on page 47.

. Store Register as

STRH Rt, [Rn, <Rm|#imm>] halfword - 3.4.2 on page 47.

SUB{S} {Rd, } Rn, <Rm|#imm> |Subtract N,Z,C\V 3.5.1 on page 54.

svC #imm Supervisor Call ; ?‘87' 10 on page

SXTB Rd, Rm Sign extend byte - 3.5.8 on page 63.

SXTH Rd, Rm Sign extend halfword |- 3.5.8 on page 63.

TST Rn, Rm fezgt'ca' AND based |\ » 3.5.9 on page 64.

UXTB Rd, Rm Zero extend a byte - 3.5.8 on page 63.
Zero extend a

UXTH Rd, Rm halfword - 3.5.8 on page 63.

WFE - Wait For Event - 3.7.11 on page 79.

WFI - Wait For Interrupt - 3.7.12 on page

38/110

80.

DocID025763 Rev 1

3

g

-
£ \uf

electronic com

PM0223

")

Yonen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP

is

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set

3.2

3

Intrinsic functions

ISO/IEC C code cannot directly access some STM32L0 Cortex-MO+ instructions. This
section describes intrinsic functions that can generate these instructions, provided by the
CMSIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, you might have to use inline assembler to access the relevant

instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C
code cannot directly access:

Table 16. CMSIS intrinsic functions to generate some STM32L0 Cortex-M0+

instructions

Instruction CMSIS intrinsic function

CPSIE i void _ _enable_irg(void)

CPSID 1 void _ disable_irqg(void)

ISB void __ ISB(void)

DSB void __ DSB(void)

DMB void _ DMB(void)

NOP void __ NOP (void)

REV uint32_t _ REV(uint32_t int wvalue)
REV16 uint32_t _ REV16 (uint32_t int wvalue)
REVSH uint32_t _ REVSH(uint32_t int wvalue)
SEV void ___SEV(void)

WFE void __ WFE (void)

WFI void _ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using

MRS and MsSR instructions

Table 17. CMSIS intrinsic functions to access the special registers

Special register Access CMSIS function
Read uint32_t _ get_PRIMASK (void)

PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t _ get_CONTROL (void)

CONTROL
Write void __set_CONTROL (uint32_t value)
Read uint32_t __get_MSP (void)

MSP
Write void __set_MSP (uint32_t TopOfMainStack)
Read uint32_t __get_PSP (void)

PSP
Write void __set_PSP (uint32_t TopOfProcStack)

DoclD025763 Rev 1 39/110

g

o

electronic com

")

\uf

Yonen

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.3

3.3.1

3.3.2

Note:

3.3.3

Note:

40/110

About the instruction descriptions

The following sections give more information about using the instructions:
e Operands.

e Restrictions when using PC or SP.

e Shift Operations.

e Address alignment.

e PC-relative expressions.

e Conditional execution.

Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination
register. When there is a destination register in the instruction, it is usually specified before
the other operands.

Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether you can use, the
Program Counter (PC) or Stack Pointer (SP) for the operands or destination register. See
instruction descriptions for more information.

When you update the PC with a BX, BLX, or PoP instruction, bit[0] of any address must be 1
for correct execution. This is because this bit indicates the destination instruction set, and

the STM32L0 Cortex-M0O+ processor only supports Thumb instructions. When a BL or BLX

instruction writes the value of bit[0] into the LR it is automatically assigned the value 1.

Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed directly by the instructions asr, L.sR, LSL,
and rOR and the result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description. If the shift length is 0, no shift occurs. Register shift operations
update the carry flag except when the specified shift length is 0. The following sub-sections
describe the various shift operations and how they affect the carry flag. In these
descriptions, Rm s the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by » bits moves the left-hand 32-n bits of the register rm, to the right by
n places, into the right-hand 32-n bits of the result, and it copies the original bit[31] of the
register into the left-hand n bits of the result. See Figure 9 on page 41.

You can use the ASR operation to divide the signed value in the register Rm by 2", with the
result being rounded towards negative-infinity.

When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[n-1], of
the register rm

If nis 32 or more, then all the bits in the result are cleared to 0.
If nis 33 or more and the carry flag is updated, it is updated to 0.

3

DocID025763 Rev 1

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
m;;ul

o

g

.f
72

electronic compot

PM0223 The STM32L0 Cortex-M0+ Instruction Set
Figure 9. ASR#3
Carry
A 4 A4 A A4 Flag

MS33830V1

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register rm, to the right by n

places, into the right-hand 32-n bits of the result, and it sets the left-hand n bits of the result
to 0. See Figure 10 on page 41.

You can use the LSR operation to divide the value in the register rm by 2", if the value is
regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register rRm

Note: If nis 32 or more, then all the bits in the result are cleared to 0.

If n is 33 or more and the carry flag is updated, it is updated to O.

Figure 10. LSR#3

Cl) (l) (l) Carry
vV vV ¥ Flag
31 5(413(2|1]|0 D
A A AT A
f Lttt
L J
MS33831V1
LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n

places, into the left-hand 32-n bits of the result, and it sets the right-hand n bits of the result
to 0. See Figure 11 on page 42.

You can use the LSL operation to multiply the value in the register rm by 2", if the value is

regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n],

of the register rm. These instructions do not affect the carry flag when used with LSL#0.
Note: If nis 32 or more, then all the bits in the result are cleared to 0.
If n is 33 or more and the carry flag is updated, it is updated to O.

3

DocID025763 Rev 1 41/110

g

g
III;;III

¢lectronic com

3

\uf

s

One

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

Figure 11. LSL #3

N ¢«O—
A [O —
O ¢«O—

| | L Lid

MS33832V1
ROR
Rotate right by » bits moves the left-hand 32 -nbits of the register rm, to the right by » places,
into the right-hand 32-n bits of the result, and it moves the right-hand » bits of the register
into the left-hand » bits of the result. See Figure 12 on page 42.
When the instruction is RORS the carry flag is updated to the last bit rotation, bit[»-1], of the
register Rm.

Note:

If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

If ROR with shift length, n, greater than 32 is the same as ROR with shift length n-32

Figure 12. ROR #3

Carry
l Y v | Flag
31 5(4(3]2|1|0 |;|
A AT A
(17 [T T 7
| |
.es ! i
MS33833V1
3.34 Address alignment
An aligned access is an operation where a word-aligned address is used for a word, or
multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.
There is no support for unaligned accesses on the STM32L0 Cortex-M0+ processor. Any
attempt to perform an unaligned memory access operation results in a HardFault exception.
3.3.5 PC-relative expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric
offset. The assembler calculates the required offset from the label and the address of the
current instruction. If the offset is too big, the assembler produces an error.
42/110 DoclD025763 Rev 1 Kys

g

o

electronic com

")

\uf

Yonen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-MO0+ Instruction Set

Note: For most instructions, the value of the PC is the address of the current instruction plus 4
bytes.
Your assembler might permit other syntaxes for PC-relative expressions, such as a label
plus or minus a number, or an expression of the form [PC, #imm].

3.3.6 Conditional execution

3

Most data processing instructions update the condition flags in the Application Program
Status Register (APSR) according to the result of the operation, see Application Program
Status Register on page 15. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

You can execute a conditional branch instruction, based on the condition flags set in another
instruction, either:

¢ Immediately after the instruction that updated the flags.
e After any number of intervening instructions that have not updated the flags.

On the STM32L0 Cortex-M0+ processor, conditional execution is available by using
conditional branches.

This section describes:
e The condition flags on page 43.
e Condition code suffixes on page 44.

The condition flags

The APSR contains the following condition flags:

Set to 1 when the result of the operation was negative, cleared to 0 otherwise
Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

< O N Z2

Set to 1 when the operation caused overflow, cleared to 0 otherwise.
For more information about the APSR see Program Status Register on page 14.

A carry occurs:

e If the result of an addition is greater than or equal to 2%2,

e If the result of a subtraction is positive or zero.

e As the result of a shift or rotate instruction.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result
had the operation been performed at infinite precision, for example:

e If adding two negative values results in a positive value.

e |f adding two positive values results in a negative value.

e If subtracting a positive value from a negative value generates a positive value.

e If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for cMP, or adding, for CMN, except that
the result is discarded. See the instruction descriptions for more information.

DocID025763 Rev 1 43/110

g

o

electronic com

The STM32L0 Cortex-M0+ Instruction Set

IO

|

\uf

o

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMo0223

44/110

Condition code suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a
condition code is only taken if the condition code flags in the APSR meet the specified
condition, otherwise the branch instruction is ignored. Table 18 shows the condition codes

to use.

Table 18 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags
Table 18. Condition code suffixes
Suffix Flags Meaning
EQ Z=1 Equal, last flag setting result was zero.
NE Z=0 Not equal, last flag setting result was non-zero.
CS or HS |[C=1 Higher or same, unsigned.
CC or Lo [C=0 Lower, unsigned.
MI N=1 Negative.
PL N=0 Positive or zero.
Vs V=1 Overflow.
vC V=0 No overflow.
HI C=1andZ=0 Higher, unsigned.
LS C=0o0r Z2=1 Lower or same, unsigned.
GE N=V Greater than or equal, signed.
LT N!=V Less than, signed.
GT Z=0and N=V Greater than, signed.
LE Z=1orN!=V Less than or equal, signed.
AL Can have any value Always. This is the default when no suffix is specified.

DocID025763 Rev 1

3

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
— Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
|

PM0223 The STM32L0 Cortex-M0+ Instruction Set

3.4 Memory access instructions

Table 19 shows the memory access instructions

Table 19. Memory access instructions

Mnemonic | Brief description See

ADR Generate PC-relative address 3.4.1: ADR on page 46.

LDM Load Multiple registers 3.4.5: LDM and STM on page 50.

LDR{type} |Load Register using immediate offset 3.4.2: LDR and STR, immediate offset on page 47.
LDR{type} |Load Register using register offset 3.4.3: LDR and STR, register offset on page 48.
LDR Load Register from PC-relative address 3.4.4: LDR, PC-relative on page 49.

POP Pop registers from stack 3.4.6: PUSH and POP on page 52.

PUSH Push registers onto stack 3.4.6: PUSH and POP on page 52.

STM Store Multiple registers 3.4.5: LDM and STM on page 50.

STR{type} | Store Register using immediate offset 3.4.2: LDR and STR, immediate offset on page 47.
STR{type} |Store Register using register offset 3.4.3: LDR and STR, register offset on page 48.

3

DocID025763 Rev 1 45/110

g

electronic componen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.4.1

46/110

ADR

Generates a PC-relative address.

Syntax
ADR Rd, label

where:

Rd Is the destination register.

label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 42.

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR facilitates the generation of position-independent code, because the address is
PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure
that bit[0] of the address you generate is set to 1 for correct execution.

Restrictions

In this instruction Rd must specify R0-R7. The data-value addressed must be word aligned
and within 1020 bytes of the current PC.

Condition flags
This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as;
TextMessage to R1

ADR R3, [PC,#996] ; Set R3 to value of PC + 996.

3

DocID025763 Rev 1

n

g

IO

electronic com

PM0223

o

.

'l.
'u.d'

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set

3.4.2

3

LDR and STR, immediate offset

Load and Store with immediate offset.

Syntax

LDR Rt, [<Rn | SP> {, #imm}]
LDR<B|H> Rt, [Rn {, #imm}]
STR Rt, [<Rn | SP>, {,#imm}]
STR<B|H> Rt, [Rn {,#imm}]

where:

Rt Is the register to load or store.

Rn Is the register on which the memory address is based

imm Is an offset from Rn. If imm is omitted, it is assumed to be zero.
Operation

LDR, LDRB and LDRH instructions load the register specified by rt with either a word, byte
or halfword data value from memory. Sizes less than word are zero extended to 32-bits
before being written to the register specified by Rt.

STR, STRB and STRH instructions store the word, least-significant byte or lower halfword
contained in the single register specified by Rt in to memory. The memory address to load
from or store to is the sum of the value in the register specified by either rRn or SP and the

immediate value imm

Restrictions

In these instructions:
e Rt and Rnmust only specify RO-R7.
) imm must be between:

— 0and 1020 and an integer multiple of four for LDR and STR using SP as the base
register.

— 0and 124 and an integer multiple of four for LDR and STR using R0-R7 as the
base register.

— 0 and 62 and an integer multiple of two for LDRH and STRH.
— 0and 31 for LDRB and STRB.

e The computed address must be divisible by the number of bytes in the transaction, see
3.3.4: Address alignment on page 42.

Condition flags
These instructions do not change the flags.

Examples

LDR R4, [R7 ; Loads R4 from the address in R7.
STR R2, [RO, #const-struc] ; const-struc is an expression evaluating

; to a constant in the range 0-1020.

DocID025763 Rev 1 47/110

g

electronic com

g

'-
'u.d'

IO

72

o

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.4.3

48/110

LDR and STR, register offset

Load and Store with register offset.

Syntax

LDR Rt, [Rn, Rm]
LDR<B|H> Rt, [Rn, Rm]
LDR<SB|SH> Rt, [Rn, Rm]
STR Rt, [Rn, Rm]
STR<B|H> Rt, [Rn, Rm]

where:

Rt Is the register to load or store.

Rn Is the register on which the memory address is based
Rm s a register containing a value to be used as the offset
Operation

LDR, LDRB, LDRH, LDRSB and LDRSH load the register specified by Rt with either a
word, zero extended byte, zero extended halfword, sign extended byte or sign extended
halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in
the single register specified by Rt into memory.

The memory address to load from or store to is the sum of the values in the registers
specified by Rn and Rm.

Restrictions

In these instructions:
e Rt, Rn, and Rm must only specify RO-R7.

e The computed memory address must be divisible by the number of bytes in the load or
store, see 3.3.4: Address alignment on page 42.

Condition flags

These instructions do not change the flags.

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1

LDRSH R1, [R2, R3] ; Load a halfword from the memory address

; specified by (R2 + R3), sign extend to 32-bits
; and write to R1.

3

DocID025763 Rev 1

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
— Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
m;;lll

PM0223 The STM32L0 Cortex-M0+ Instruction Set

344 LDR, PC-relative

Load register (literal) from memory.

Syntax

LDR Rt, label

where:

Rt Is the register to load

label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 42.
Operation

Loads the register specified by rt from the word in memory specified by Iabel.
Restrictions

In these instructions, 1abel must be within 1020 bytes of the current PC and word aligned.
Condition flags

These instructions do not change the flags.

Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).

3

DocID025763 Rev 1 49/110

ws
Ll

electronic com

Yonen

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.4.5

50/110

LDM and STM

Load and Store Multiple registers.

Syntax
LDM Rn{!}, reglist
STM Rn!, reglist

where:

Rn Is the register on which the memory addresses are based.

! Writeback suffix.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It

can contain register ranges. It must be comma separated if it contains more
than one register or register range, see Examples on page 51.

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being
Incremented After each access. LDMFD refers to its use for popping data from Full
Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being
Incremented After each access. STMEA refers to its use for pushing data onto Empty
Ascending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses
based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses
based on Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value
in the register specified by Rn to the value in the register specified by rn + 4 * (n-1), where n
is the number of registers in reglist. The accesses happens in order of increasing
register numbers, with the lowest numbered register using the lowest memory address and
the highest number register using the highest memory address. If the writeback suffix is
specified, the value in the register specified by Rn + 4 *n is written back to the register
specified by Rn.

Restrictions

In these instructions:
° reglist and Rn are limited to RO-R7.

e The writeback suffix must always be used unless the instruction is an .DM where reglist
also contains Rn, in which case the writeback suffix must not be used.

e The value in the register specified by Rn must be word aligned. See 3.3.4: Address
alignment on page 42 for more information.

. For sTuV, if Rn appears in reglist, then it must be the first register in the list.

Condition flags

These instructions do not change the flags.

3

DocID025763 Rev 1

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
- Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

]
punnnni|
.

(

electronic compor

PM0223 The STM32L0 Cortex-M0+ Instruction Set

Examples

LDM RO, {RO,R3,R4}
STMIA R1!, {R2-R4,R6}

; LDMIA is a synonym for LDM

Incorrect examples

STM R5!,{R4,R5,R6} ;Value stored for R5 is unpredictable

LDM R2, {} ;There must be at least one register in the list

3

DocID025763 Rev 1 51/110

& [ymnnnm

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.4.6

52/110

PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH reglist
POP reglist

where:

reglist Is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP
uses the value in the SP register as the lowest memory address, implementing a full-
descending stack. On completion, PUSH updates the SP register to point to the location of
the lowest store value, POP updates the SP register to point to the location above the
highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when
the POP instruction has completed. Bit[0] of the value read for the PC is used to update the
APSR T-bit. This bit must be 1 to ensure correct operation.

Restrictions

In these instructions:
. reglist must use only RO-R7.
e The exception is LR for a PusH and PC for a POP.

Condition flags

These instructions do not change the flags.

Examples
PUSH {RO,R4-R7} ; Push RO,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {RO,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to

; the new PC.

3

DocID025763 Rev 1

g

o

electronic com

\uf

one

8

Wins

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-M0+ Instruction Set
3.5 General data processing instructions
Table 20 shows the data processing instructions:
Table 20. Data processing instructions
Mnemonic | Brief description See
ADCS Add with Carry 2a5g ; : 5/:DC ADD, RSB, SBC, and SUB on
ADD(S) Add 3.5.1: ADC, ADD, RSB, SBC, and SUB on
page 54.
ANDS Logical AND 3.6.2: AND, ORR, EOR, and BIC on page 56.
ASRS Arithmetic Shift Right 3.6.3: ASR, LSL, LSR, and ROR on page 57.
BICS Bit Clear 3.5.2: AND, ORR, EOR, and BIC on page 56.
CMN Compare Negative 3.5.4: CMP and CMN on page 59.
CMP Compare 3.5.4: CMP and CMN on page 59.
EORS Exclusive OR 3.5.2: AND, ORR, EOR, and BIC on page 56.
LSLS Logical Shift Left 3.6.3: ASR, LSL, LSR, and ROR on page 57.
LSRS Logical Shift Right 3.6.3: ASR, LSL, LSR, and ROR on page 57.
MOV{S} Move 3.6.5: MOV and MVN on page 60.
MULS Multiply 3.5.6: MULS on page 61.
MVNS Move NOT 3.5.5: MOV and MVN on page 60.
ORRS Logical OR 3.5.2: AND, ORR, EOR, and BIC on page 56.
REV Reverse byte order in a word 3.5.7: REV, REV16, and REVSH on page 62.
REV16 Reverse byte order in each halfword 3.5.7: REV, REV16, and REVSH on page 62.
REVSH :ﬁgi:;ﬁ Zil(ttir?c:der in bottom halfword | 5 7. pry, REV16, and REVSH on page 62.
RORS Rotate Right 3.6.3: ASR, LSL, LSR, and ROR on page 57.
RSBS Reverse Subtract gaSQ ; : 5/;DC ADD, RSB, SBC, and SUB on
SBCS Subtract with Carry 2:9; ;DC ADD, RSB, SBC, and SUB on
SUBS Subtract 3.5.1: ADC, ADD, RSB, SBC, and SUB on
page 54.
SXTB Sign extend a byte 3.5.8: SXT and UXT on page 63.
SXTH Sign extend a halfword 3.56.8: SXT and UXT on page 63.
UXTB Zero extend a byte 3.5.8: SXT and UXT on page 63.
UXTH Zero extend a halfword 3.5.8: SXT and UXT on page 63.
TST Test 3.5.9: TST on page 64.
ﬁ DoclD025763 Rev 1 53/110

=4[LLLLLT
f

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.5.1

54/110

ADC, ADD, RSB, SBC, and SUB
Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

Syntax

ADCS {Rd,} Rn, Rm
ADD{S} {Rd,} Rn, <Rm/#imm>
RSBS {Rd,} Rn, Rm, #0
SBCS {Rd,} Rn, Rm
SUB{S} {Rd,} Rn, <Rm|#imm>

Where:

s Causes an app or sus instruction to update flags.
Rd Specifies the result register.

reglist Specifies the first source register.

Imm Specifies a constant immediate value.

When the optional Rd register specifier is omitted, it is assumed to take the same value as
Rn, for example ADDS R1,R2 is identical to ADDS R1,R1,R2.

Operation

The ADCS instruction adds the value in Rn to the value in Rm, adding another one if the carry
flag is set, places the result in the register specified by Rd and updates the N, Z, C, and V
flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified
by imm and places the result in the register specified by rd.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C and
V flags.

The RSBS instruction subtracts the value in Rn from zero, producing the arithmetic negative
of the value, and places the result in the register specified by Rd and updates the N, Z, C
and V flags.

The SBCS instruction subtracts the value of Rm from the value in Rn, deducts another one if
the carry flag is set. It places the result in the register specified by Rd and updates the N, Z,
C and V flags.

The sUB instruction subtracts the value in rm or the immediate specified by imm. It places
the result in the register specified by Rd.

The suUBs instruction performs the same operation as SUB and also updates the N, Z, C and
V flags.

Use ADC and SBC to synthesize multiword arithmetic, see Examples on page 55.
See also 3.4.1: ADR on page 46.
Restrictions

Table 21 lists the legal combinations of register specifiers and immediate values that can be
used with each instruction.

DoclD025763 Rev 1 ‘Yl

g

o

electronic com

PM0223

one

u.J'f:lf

s

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set

3

Table 21. ADC, ADD, RSB, SBC and SUB operand restrictions

Instruction |Rd Rn Rm imm Restrictions
ADCS RO-R7 |RO-R7 RO-R7 |- Rd and Rn must specify the same register.
Rd and Rn must specify the same register.
R0-R15 |RO-R15 |RO-PC |-
Rn and Rm must not both specify PC.
ADD RO-R7 SP or) 0-1020 Immediate value must be an integer multiple of
PC four.
sp sp) 0-508 Immediate value must be an integer multiple of
four.
R0O-R7 |RO-R7 - 0-7 -
ADDS RO-R7 |RO-R7 - 0-255 |Rd and Rn must specify the same register.
R0O-R7 |RO-R7 RO-R7 |- -
RSBS R0O-R7 |RO-R7 - - -
SBCS R0O-R7 |RO-R7 RO-R7 |- Rd and Rn must specify the same register.
SUB sp sp) 0-508 Immediate value must be an integer multiple of
four.
R0O-R7 |RO-R7 - 0-7 -
SUBS RO-R7 |RO-R7 - 0-255 |Rd and Rn must specify the same register.
RO-R7 |RO-R7 RO-R7 |- -

Examples

Example 1: shows two instructions that add a 64-bit integer contained in RO and R1 to
another 64-bit integer contained in R2 and R3, and place the result in RO and R1.

Example 1: 64-bit addition

ADDS RO, RO, R2 ; add the least significant words
ADCS R1, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. Example 2: shows instructions
that subtract a 96-bit integer contained in R1, R2, and R3 from another contained in R4, R5,
and R6. The example stores the result in R4, R5, and R6.

Example 2: 96-bit subtraction

SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry

Example 3: shows the RSBS instruction used to perform a 1's complement of a single
register.

Example 3: Arithmetic negation
RSBS R7, R7, #0 ; subtract R7 from zero

DoclD025763 Rev 1 55/110

g
Ll

electronic com

g

.f
72

IOL

The STM32L0 Cortex-M0+ Instruction Set

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMo0223

3.5.2 AND, ORR, EOR, and BIC
Logical AND, OR, Exclusive OR, and Bit Clear.

Syntax

ANDS {Rd,}
ORRS {Rd,}
EORS {Rd,}
BICSs {Rd,}

where:

R4

Rm

Operation

Is the destination register.

Is the register holding the first operand and is the same as the destination

register.

Second register

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive
OR operations on the values in Rn and Rm.

The BIC instruction performs an AND operation on the bits in rn with the logical negation of
the corresponding bits in the value of rm.

The condition code flags are updated on the result of the operation, see Condition flags on

page 47.

Restrictions

In these instructions, Rd, Rn, and Rm must only specify RO-R7.

Condition flags
These instructions:

Update the N and Z flags according to the result.
Do not affect the C or V flag.

Examples

ANDS
ORRS
ANDS
EORS
BICS

56/110

R2,
R2,
R5,
R7,
RO,

R2,
R2,
R5,
R7,
RO,

R1
R5
R8
R6
R1

DocID025763 Rev 1

3

ws
/")

o

electronic compon

PM0223

o

l|‘ w

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set

3.5.3

Note:

3

ASR, LSL, LSR, and ROR
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

Syntax

ASRS {Rd,} Rm, Rs
ASRS {Rd,} Rm, #imm
LSLS {Rd,} Rm, Rs
LSLS {Rd,} Rm, #imm
LSRS {Rd,} Rm, Rs
LSRS {Rd,} Rm, #imm
RORS {Rd,} Rm, Rs

where:

Rd Is the destination register. If Rd is omitted, it is assumed to take the same
value as Rm.

Rm Is the register holding the value to be shifted.

Rs Is the register holding the shift length to apply to the value in Rm

Imm Is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32.

MOVS R4, Rm is a pseudonym for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-
right or a right-rotation of the bits in the register rm by the number of places specified by the
immediate imm or the value in the least-significant byte of the register specified by Rs.

For details on what result is generated by the different instructions, see 3.3.3: Shift
Operations on page 40.

Restrictions

In these instructions, rRd, Rm, and Rs must only specify RO-R7. For non-immediate
instructions, R4 and Rm must specify the same register.

Condition flags
These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see 3.3.3:
Shift Operations on page 40. The V flag is left unmodified.

DocID025763 Rev 1 57/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
- Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

]
punnnni|
¥s

(

electronic compor

The STM32L0 Cortex-MO0+ Instruction Set PMO0223
Examples
ASRS R7, R5, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSRS R4, R5, #6 ; Logical shift right by 6 bits
RORS R4, R4, R6 ; Rotate right by the value in the bottom byte of R6.
58/110 DoclD025763 Rev 1 Kys

ws
/")

o

electronic compon

PM0223

o

l|‘ w

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set

3.54

3

CMP and CMN

Compare and Compare Negative.

Syntax

CMN Rn, Rm
CMP Rn, #imm
CMP Rn, Rm

where:

Rn Is the register holding the first operand.
Rm Is the register to compare with.

Imm Is the immediate value to compare with.
Operation

These instructions compare the value in a register with either the value in another register or
an immediate value. They update the condition flags on the result, but do not write the result
to a register.

The cMP instruction subtracts either the value in the register specified by rRm, or the
immediate imm from the value in Rn and updates the flags. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Rmto the value in Rn and updates the flags. This is the
same as an ADDS instruction, except that the result is discarded.

Restrictions

For the:
e CMN instruction Rn, and Rm must only specify RO-R7.
e CMP instruction:

— Rn and Rm can specify R0O-R14.

— Immediate must be in the range 0-255.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, R2

DoclD025763 Rev 1 59/110

g

electronic com

g

'-
'u.d'

IO

72

o

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.5.5

Note:

60/110

MOV and MVN
Move and Move NOT.

Syntax

MOV{S} Rd, Rm
MOVS Rd, #imm
MVNS Rd, Rm

where:

s Is an optional suffix. If s is specified, the condition code flags are updated on
the result of the operation, see 3.3.6: Conditional execution on page 43.

Rd Is the destination register.

Rm Is a register.

Imm Is any value in the range 0-255.

Operation

The MOV instruction copies the value of rRminto RA.

The MOVS instruction performs the same operation as the MOV instruction, but also updates
the N and Z flags.

The MVSN instruction takes the value of rRm, performs a bitwise logical negate operation on
the value, and places the result into rd.

Restrictions
In these instructions, rRd, and rRm must only specify RO-R7.

When Rd is the PC in a MOV instruction:

e Bit[0] of the result is discarded.

e A branch occurs to the address created by forcing bit[0] of the result to 0. The T-bit
remains unmodified.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use
of a BX or BLX instruction to branch for software portability.

Condition flags

If S is specified, these instructions:
e update the N and Z flags according to the result
e do not affect the C or V flags.

Example
MOVS RO, #0x000B ; Write value of 0x000B to RO, flags get updated
MOVS R1, #0xO0 ; Write value of zero to R1l, flags are updated
MOV R10, R12 ; Write value in R12 to R10, flags are not updated
MOVS R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, RO ; Write inverse of RO to the R2 and update flags

DoclD025763 Rev 1 KYI

g

g
III;;III

¢lectronic com

one

l|‘ w

s

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-M0+ Instruction Set
3.5.6 MULS

Multiply using 32-bit operands, and producing a 32-bit result.

Syntax

MULS Rd, Rn, Rm

where:

Rd Is the destination register.

Rn, Rm Ire registers holding the values to be multiplied.

Operation

3

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places
the least significant 32 bits of the result in Rd. The condition code flags are updated on the
result of the operation, see 3.3.6: Conditional execution on page 43.

The results of this instruction does not depend on whether the operands are signed or
unsigned.

Restrictions

In this instruction:
e Rd, Rn, and Rm must only specify R0O-R7.
e Rd must be the same as Rm.

Condition flags

This instruction:
e Updates the N and Z flags according to the result.
e Does not affect the C or V flags.

Examples

MULS RO, R2, RO ; Multiply with flag update, RO = RO x R2

DocID025763 Rev 1 61/110

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
m;;ul

o

g

.f
72

electronic compot

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.5.7 REV, REV16, and REVSH

Reverse bytes.

Syntax

REV Rd, Rn
REV16 Rd, Rn
REVSH Rd, Rn

where:

Rd Is the destination register.
Rn Is the source register.
Operation

Use these instructions to change endianness of data:

REV Converts 32-bit big-endian data into little-endian data or 32-bit little-endian
data into big-endian data.

REV16 Converts two packed 16-bit big-endian data into little-endian data or two
packed 16-bit little-endian data into big-endian data.

REVSH Converts 16-bit signed big-endian data into 32-bit signed little-endian data or
16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

In these instructions, R4, and Rn must only specify RO-R7.
Condition flags

These instructions do not change the flags.

Examples

REV R3, R7
REV16 RO, RO
REVSH RO, R5

; Reverse byte order of value in R7 and write it to R3
; Reverse byte order of each 16-bit halfword in RO
; Reverse signed halfword

3

62/110 DocID025763 Rev 1

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
III;;III

PM0223 The STM32L0 Cortex-M0+ Instruction Set

3.5.8 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTB Rd, Rm
SXTH Rd, Rm
UXTB Rd, Rm
UXTH Rd, Rm

where:

Rd Is the destination register.

Rm Is the register holding the value to be extended.
Operation

e These instructions extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.

e UXTB extracts bits[7:0] and zero extends to 32 bits.

e SXTH extracts bits[15:0] and sign extends to 32 bits.

e UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

In these instructions, Rd and rRm must only specify RO-R7.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4, R6 ; Obtain the lower halfword of the

; value in R6 and then sign extend to

; 32 bits and write the result to R4.

; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3

UXTB R3, R1

3

DoclD025763 Rev 1 63/110

g

¢lectronic com

g

’-
& 'lll"

IOL

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223
3.5.9 TST

Test bits.

Syntax

64/110

TST Rn, Rm

where:

Rn Is the register holding the first operand.
Rm The register to test against.
Operation

This instruction tests the value in a register against another register. It updates the condition
flags based on the result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value in
Rm. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with a register that has that bit
set to 1 and all other bits cleared to 0.

Restrictions
In these instructions, Rn and rRm must only specify RO-R7.

Condition flags

This instruction:
e updates the N and Z flags according to the result
e does not affect the C or V flags.

Examples

TST RO, R1 ; Perform bitwise AND of RO value and R1l value,
; condition code flags are updated but result is discarded

3

DocID025763 Rev 1

g
m;;lll

electronic components

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-M0+ Instruction Set

3.6 Branch and control instructions

Table 22 shows the branch and control instructions:
Table 22. Branch and control instructions

Mnemonic Brief description See
B{cc} Branch {conditionally} 3.6.1: B, BL, BX, and BLX on page 66.
BL Branch with Link 3.6.1: B, BL, BX, and BLX on page 66.
BLX Branch indirect with Link 3.6.1: B, BL, BX, and BLX on page 66.
BX Branch indirect 3.6.1: B, BL, BX, and BLX on page 66.

‘Yl

DoclD025763 Rev 1 65/110

g

electronic com

n

IOL

|

;,

'-
(ol

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.6.1

Note:

66/110

B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label
BL label

BX Rm

BLX Rm

where:
Cond Is an optional condition code, see 3.3.6: Conditional execution on page 43.
label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 42.

Rm Is a register providing the address to branch to.

Operation

All these instructions cause a branch to the address indicated by 1abel or contained in the
register specified by rm. In addition:

° the BL and BLX instructions write the address of the next instruction to LR, the link
register R14.

e the BX and BLX instructions result in a HardFault exception if bit[0] of rm is O.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable
for use by a subsequent PoP {PC} or BX instruction to perform a successful return branch.

Table 23 shows the ranges for the various branch instructions

Table 23. Branch ranges

Instruction Branch range

B label -2 KB to +2 KB.

Beond label -256 bytes to +254 bytes.
BL label -16 MB to +16 MB.

BX Rm Any value in register.
BLX Rm Any value in register.

Restrictions

In these instructions:
. Do not use SP or PC in the BX or BLX instruction.

e ForBXx and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the
EPSR T-bit and is discarded from the target address.

Bcond is the only conditional instruction on the STM32L0 Cortex-MO+ processor.

3

DocID025763 Rev 1

]
praaun

electronic compo

f/

nents

it

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223

The STM32L0 Cortex-M0+ Instruction Set

3

Condition flags

These instructions do not change the flags.

Examples

B
BL

BX
BLX

BEQ

loopA
funC

LR
RO

labelD

7

7

Branch to loopA

Branch with link (Call) to function funC, return address
stored in LR

Return from function call

Branch with link and exchange (Call) to a address stored
in RO

Conditionally branch to labelD if last flag setting
instruction set the Z flag, else do not branch.

DocID025763 Rev 1 67/110

g

electronic com

n

o

/.

\uf

yonen

.f
72

The STM32L0 Cortex-M0+ Instruction Set

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMo0223

3.7

68/110

Miscellaneous instructions

Table 24 shows the remaining STM32L0 Cortex-MO0+ instructions

Table 24. Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint 3.7.1: BKPT on page 69.
CPSID Change Processor State, Disable Interrupts 3.7.2: CPS on page 70.
CPSIE Change Processor State, Enable Interrupts 3.7.2: CPS on page 70.
DMB Data Memory Barrier 3.7.3: DMB on page 71.
DSB Data Synchronization Barrier 3.7.4: DSB on page 72.
ISB Instruction Synchronization Barrier 3.7.5: ISB on page 73.
MRS Move from special register to register 3.7.6: MRS on page 74.
MSR Move from register to special register 3.7.7: MSR on page 75.
NOP No Operation 3.7.7: MSR on page 75.
SEV Send Event 3.7.9: SEV on page 77.
svc Supervisor Call 3.7.10: SVC on page 78.
WFE Wait For Event 3.7.11: WFE on page 79.
WFI Wait For Interrupt 3.7.12: WFI on page 80.

DocID025763 Rev 1

3

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
III;;III

PM0223 The STM32L0 Cortex-M0+ Instruction Set

3.71 BKPT
Breakpoint.

Syntax

BKPT #imm

where:

Imm Is an integer in the range 0-255.

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

Immis ignored by the processor. If required, a debugger can use it to store additional
information about the breakpoint.

The processor might also produce a HardFault or go in to Lockup if a debugger is not
attached when a BKPT instruction is executed. See 2.4.1: Lockup on page 33 for more

information.
Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

BKPT #0 ; Breakpoint with immediate value set to 0xO0.

3

DoclD025763 Rev 1 69/110

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
III;;III

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.7.2 CPS
Change Processor State.

Syntax

CPSID i
CPSIE i

Operation

CcPs changes the PRIMASK special register values. CPSID causes interrupts to be disabled
by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK. See
Exception mask register on page 17 for more information about these registers.

Restrictions

If the current mode of execution is not privileged, then this instruction behaves as a NOP and
does not change the current state of PRIMASK.

Condition flags
This instruction does not change the condition flags.

Examples

CPSID 1 ; Disable all interrupts except NMI (set PRIMASK.PM)
CPSIE i ; Enable interrupts (clear PRIMASK.PM)

3

70/110 DocID025763 Rev 1

g
m;;lll

electronic components

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-MO0+ Instruction Set
3.7.3 DMB

Data Memory Barrier.

Syntax

DMB

Operation

3

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear
in program order before the DMB instruction are observed before any explicit memory
accesses that appear in program order after the DMB instruction. DMB does not affect the
ordering of instructions that do not access memory.

Restrictions
There are no restrictions.
Condition flags

This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier

DocID025763 Rev 1 71110

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
— Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g
lll;;lll

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.74 DSB
Data Synchronization Barrier.
Syntax
DSB
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB
instruction completes when all explicit memory accesses before it complete.

Restrictions
There are no restrictions.
Condition flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

3

72/110 DocID025763 Rev 1

g
lll;;lll

electronic components

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 The STM32L0 Cortex-M0+ Instruction Set
3.7.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB

Operation

3

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so
that all instructions following the 1SB are fetched from cache or memory again, after the 1sB
instruction has been completed.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

DocID025763 Rev 1 73/110

g

IOL

¢lectronic com

|

’-
(ol

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.7.6

74/110

MRS
Move the contents of a special register to a general-purpose register.

Syntax

MRS Rd, spec_reg

where:

Rd Is the general-purpose destination register.

spec_reg Is one of the special-purpose registers: APSR, IPSR, EPSR, IEPSR,
IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, Of CONTROL.

Operation

MSR stores the contents of a special-purpose register to a general-purpose register. The
MSR instruction can be combined with the MSR instruction to produce read-modify-write
sequences, which are suitable for modifying a specific flag in the PSR.

See 3.7.7: MSR on page 75.
Restrictions
In this instruction, Rd must not be SP or PC.

If the current mode of execution is not privileged, then the values of all registers other than
the APSR read as zero.

Condition flags

This instruction does not change the flags.

Examples

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

3

DocID025763 Rev 1

= Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

electronic components

g

PM0223 The STM32L0 Cortex-M0+ Instruction Set

3.7.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax

MSR spec_reg, Rn

where:

Rn Is the general-purpose source register.

spec_reg Is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR,
IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, Of CONTROL.

Operation

MSR updates one of the special registers with the value from the register specified by rn.
See 3.7.6: MRS on page 74.

Restrictions

In this instruction, Rn must not be SP and must not be PC.

If the current mode of execution is not privileged, then all attempts to modify any register
other than the APSR are ignored.

Condition flags
This instruction updates the flags explicitly based on the value in Rn.
Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

3

DocID025763 Rev 1 75/110

g
lll;;lll

S Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP

lectronic component Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
clectronic components

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.7.8

76/110

NOP

No Operation.

Syntax
NOP
Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor
might remove it from the pipeline before it reaches the execution stage.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.
Examples

NOP ; No operation

3

DocID025763 Rev 1

g
lll;;lll

S Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223

The STM32L0 Cortex-M0+ Instruction Set

3.7.9

3

SEV
Send Event.

Syntax

SEV
Operation

SEV causes an event to be signaled to all processors within a multiprocessor system. It also
sets the local event register, see2.5: Power management on page 33.

See also 3.7.11: WFE on page 79.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

SEV ; Send Event

DocID025763 Rev 1 771110

g
III;;III

electronic componen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.7.10

78/110

SvVC
Supervisor Call.
Syntax

SVC #imm

where:

Imm Is an integer in the range 0-255.

Operation
The svc instruction causes the svC exception.

Imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Restrictions

Executing the svc instruction, while the current execution priority level is greater than or
equal to that of the SVCall handler, results in a fault being generated.

Condition flags
This instruction does not change the flags.
Examples
SVC #0x32 ; Supervisor Call (SVC handler can extract the immediate

value
; by locating it through the stacked PC)

3

DocID025763 Rev 1

g

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

g
III;;III

\uf

electronic compone

s

PM0223 The STM32L0 Cortex-MO0+ Instruction Set
3.7.11 WFE

Wait For Event.

Syntax

WFE

Operation

If the event register is 0, WFE suspends execution until one of the following events occurs:

e An exception, unless masked by the exception mask registers or the current priority
level.

e An exception enters the Pending state, if SEVONPEND in the System Control Register is
set.

e A Debug Entry request, if debug is enabled.

e An event signaled by a peripheral or another processor in a multiprocessor system
using the SEV instruction.

If the event register is 1, WFE clears it to 0 and completes immediately.

For more information see 2.5: Power management on page 33.

Note: WFE is intended for power saving only. When writing software assume that WFE might
behave as NOP.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

3

DocID025763 Rev 1 79/110

g
III;;III

electronic componen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

The STM32L0 Cortex-M0+ Instruction Set PMO0223

3.7.12

Note:

80/110

WFI

Wait for Interrupt.
Syntax

WFI

Operation

WFI suspends execution until one of the following events occurs:
e An exception.

e Aninterrupt becomes pending which would preempt if PRIMASK.PM was clear.
e A Debug Entry request, regardless of whether debug is enabled.

WF1I is intended for power saving only. When writing software assume that WrI might
behave as a NOP operation.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.
Examples

WFI ; Wait for interrupt

3

DocID025763 Rev 1

electronic com

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

1]
7

yonen

.f
72

PMO0223 STM32L0 Core Peripherals

4 STM32L0 Core Peripherals

4.1 About the STM32L0 core peripherals
The address map of the Private Peripheral Bus (PPB) is:

Table 25. Core peripheral register regions

Address Core peripheral Description
0xEO00E008-0xEQ00EQOF System Control Block Table 30 on page 88.
0xEOOOE010-0xEOOOEQOLF Reserved -
0xEO00E010-0xEQQ0OEQLF System timer Table 33 on page 95.
0xEO00E100-0xEO0OE4EF Nested Vectored Interrupt Controller | Table 26 on page 82.
0xEO00ED00-0xXEOOOED3F System Control Block Table 30 on page 88.
0xEO00ED90-0xEO00EDBS Memory Protection Unit(") Table 35 on page 99.
0xEOOOEF00-0xEQOO0QEF03 Nested Vectored Interrupt Controller | Table 26 on page 82.

1. Software can read the MPU Type Register at 0XEOO0ED90 to test for the presence of a Memory Protection
Unit (MPU).

In reqgister descriptions:

the register type is described as follows:

RW Read and write.
RO Read-only.
wo Write-only.

e the required privilege gives the privilege level required to access the register, as
follows:

Privileged
Only privileged software can access the register.
Unprivileged

Both unprivileged and privileged software can access the register.

3

DocID025763 Rev 1 81/110

electronic com

ws
Ll

wonents

STM32L0 Core Peripherals

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223

4.2 Nested Vectored Interrupt Controller

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it
uses. The NVIC supports:

e 32interrupts.

e A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level
corresponds to a lower priority, so level 0 is the highest interrupt priority.

e Level and pulse detection of interrupt signals.
e Interrupt tail-chaining.
e An external Non-Maskable Interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling.
The hardware implementation of the NVIC registers is

Table 26. NVIC register summary

Address Name Type | Reset value |Description

0xE000E100 NVIC ISER |RW |0x00000000 Interrupt Set-enable Register
on page 83.

0xE000E180 NVIC_ICER |[RW |0x00000000 Interrupt Clear-enable Register
on page 83.

0xXE0Q0E200 NVIC ISPR |RW |0x00000000 Interrupt Set-pending Register
on page 84.

0XE000E280 NVIC_ICPR |RW | 0x00000000 |nterrupt Clear-pending
Register on page 84.

0XE000E400-0xE000E4EF |NVIC_IPRO-7 |RW | 0x00000000 L”;S; " ‘gg Priority Registers on

4.2.1 Accessing the STM32L0 Cortex-M0+ NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

Table 27. CMSIS access NVIC functions

CMSIS function Description
void NVIC_EnableIRQ (IRQn_Type IRQn) (Y Enables an interrupt or exception.
void NVIC DisableIRQ(IRQn Type IRQn) ‘Y Disables an interrupt or exception.

void NVIC_SetPendingIRQ (IRQn_Type IRQn)(M

Sets the pending status of interrupt or exception to
1.

void NVIC_ClearPendingIRQ (IRQn_Type IRQn)(“

Clears the pending status of interrupt or exception
to 0.

Reads the pending status of interrupt or exception.

uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn) ‘!)|This function returns non-zero value if the pending

status is set to 1.

82/110

DoclD025763 Rev 1 ‘Yl

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
~ Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

clectronic compone

PMO0223 STM32L0 Core Peripherals
Table 27. CMSIS access NVIC functions (continued)

CMSIS function Description

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)(1) Sets the priority of an interrupt or exception with

configurable priority level to 1.

Reads the priority of an interrupt or exception with
uint32_t NVIC_GetPriority(IRQn_Type IRQn)(") configurable priority level. This function return the

current priority level.

1. The input parameter IRQn is the IRQ number, see Table 13 on page 27 for more information.

4.2.2 Interrupt Set-enable Register

The NVIC_ISER enables interrupts, and shows which interrupts are enabled. See the
register summary in Table 26 on page 82 for the register attributes.

The bit assignments are:

31 30 20 28 27 26 25 24 23 2 21 20 19 18 17 16
SETPENA[31:16]

rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

SETPENA[15:0]

rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs

Bits 31:0 SETENA: Interrupt set-enable bits
Write:
0: No effect
1: Enable interrupt
Read:
0: Interrupt disabled
1: Interrupt enabled

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an

interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

4.2.3 Interrupt Clear-enable Register
The NVIC_ICER disables interrupts, and show which interrupts are enabled. See the
register summary in Table 26 on page 82 for the register attributes.

The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLRENA[31:16]

rc_w1 | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_wi | rc_w1 | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_w1 | rc_w1 | rc_wi | rc_wi | rc_w1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

0

CLRENA[15:0]

rc_wi | rc_wi | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_wi | rc_wi | rc_w1 | rc_wi | rc_wi | rc_wi | rc_wi | rc_w1 | rc_wi | rc_w1

[S7d

DoclD025763 Rev 1 83/110

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
III;;::I

o

: 'l

.f
72

electronic compot

STM32L0 Core Peripherals PMO0223

Bits 31:0 CLRENA: Interrupt clear-enable bits
Write:
0: No effect
1: Disable interrupt
Read:

0: Interrupt disabled
1: Interrupt enabled

4.2.4 Interrupt Set-pending Register

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are
pending. See the register summary in Table 26 on page 82 for the register attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SETPEND[31:16]

rs | rs | rs | rs | rs | rs | rs | rs | rs I rs7 | rs | rs | rs | rs | rs | rs

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

SETPENDI[15:0]

rs | rs | rs | rs | rs | rs | rs | rs | rs I rs | rs | rs | rs | rs | rs | rs

Bits 31:0 SETPEND: Interrupt set-pending bits
Write:
0: No effect
1: Change interrupt state to pending
Read:

0: Interrupt is not pending
1: Interrupt is pending
Note: Writing 1 to the NVIC _ISPR bit corresponding to:
e Aninterrupt that is pending has no effect.
e A disabled interrupt sets the state of that interrupt to pending.

4.2.5 Interrupt Clear-pending Register
The NVIC_ICPR removes the pending state from interrupts, and shows which interrupts are
pending. See the register summary in Table 26 on page 82 for the register attributes.
The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLRPEND[31:16]

rc_w1 | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_wi | rc_w1 | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_w1 | rc_w1 | rc_wi | rc_wi | rc_w1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

CLRPEND[15:0]

rc_wi | rc_wi | rc_w1 | rc_wi | rc_w1 | rc_wi | rc_wi | rc_wi | rc_w1 | rc_wi | rc_wi | rc_wi | rc_wi | rc_w1 | rc_wi | rc_wi

84/110 DoclD025763 Rev 1 KYI

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
== Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

wonents

ws
Ll

electronic com

PMO0223 STM32L0 Core Peripherals

Bits 31:0 CLRPEND: Interrupt clear-pending bits
Write:
0: No effect
1: Removes pending state and interrupt.
Read:
0: Interrupt is not pending
1: Interrupt is pending

Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding
interrupt.

4.2.6 Interrupt Priority Registers

The NVIC_IPRO-NVIC_IPR7 registers provide an 8-bit priority field for each interrupt. These
registers are only word-accessible. See the register summary in Table 26 on page 82 for
their attributes. Each register holds four priority fields as shown:

31 24 23 16 15 8 7 0
NVIC_IPR7 PRI_31 PRI_30 PRI_29 PRI_28
NVIC_IPRn PRI_(4n+3) PRI_(4n+2) PRI_(4n+1) PRI_(4n)
NVIC_IPRO PRI_3 PRI_2 PRI_1 PRI_O

MS33834V1

Table 28. NVIC_IPRXx bit assignments

Bits Name Function
[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-192. The
[23:16] Prioritv. bvte offset 2 lower the value, the greater the priority of the
i ¥, by corresponding interrupt. The processor implements
[15:8] Priority, byte offset 1 only bits[7:6] of each field, bits [5:0] read as zero
i . and ignore writes. This means writing 255 to a
[7:0] Priority, byte offset 0 priority register saves value 192 to the register.

See 4.2.1: Accessing the STM32L0 Cortex-MO0+ NVIC registers using CMSIS on page 82
for more information about the access to the interrupt priority array, which provides the
software view of the interrupt priorities.

3

DoclD025763 Rev 1 85/110

1"

r
A
r

')

= e

- '

g \uf

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals PMO0223

4.2.7

86/110

Find the NVIC_IPR number and byte offset for interrupt M as follows:
e The corresponding NVIC_IPR number, N, is given by N = N DIV 4.
e The byte offset of the required Priority field in this register is M MOD 4, where:
— Byte offset 0 refers to register bits[7:0].
— Byte offset 1 refers to register bits[15:8].
— Byte offset 2 refers to register bits[23:16].
— Byte offset 3 refers to register bits[31:24].

Level-sensitive and pulse interrupts

STM32LO interrupts are both level-sensitive and pulse-sensitive. Pulse interrupts are also
described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the
rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral
must assert the interrupt signal for at least one clock cycle, during which the NVIC detects
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see Hardware and software control of interrupts on page 86. For a level-sensitive
interrupt, if the signal is not deasserted before the processor returns from the ISR, the
interrupt becomes pending again, and the processor must execute its ISR again. This
means that the peripheral can hold the interrupt signal asserted until it no longer requires
servicing.

Hardware and software control of interrupts

The STM32L0 Cortex-MO+ latches all interrupts. A peripheral interrupt becomes pending for
one of the following reasons:

e The NVIC detects that the interrupt signal is active and the corresponding interrupt is
not active.

e The NVIC detects a rising edge on the interrupt signal.

e Software writes to the corresponding interrupt set-pending register bit, see 4.2.4:
Interrupt Set-pending Register on page 84.

A pending interrupt remains pending until one of the following:

e The processor enters the ISR for the interrupt. This changes the state of the interrupt
from pending to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this
is pulsed the state of the interrupt changes to pending and active. In this case,
when the processor returns from the ISR the state of the interrupt changes to
pending, which might cause the processor to immediately re-enter the ISR. If the
interrupt signal is not pulsed while the processor is in the ISR, when the processor
returns from the ISR the state of the interrupt changes to inactive.

e Software writes to the corresponding interrupt clear-pending register bit.

DoclD025763 Rev 1 ‘Yl

=4[LLLLLT
f

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMO0223 STM32L0 Core Peripherals
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:
— Inactive, if the state was pending.
— Active, if the state was active and pending.

4.2.8 NVIC usage hints and tips

3

Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only
prevents the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of
the new vector table are set up for fault handlers, NMI and all enabled exception like
interrupts. For more information, see 4.3.4: Vector Table Offset Register on page 91.

NVIC programming hints

Software uses the cestri and cpsipi instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irqg(void) // Disable Interrupts
void __enable_irg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 29. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn.

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) |Return true (1)if IRQnis
pending.

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQnN pending.

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status.

void NVIC_SetPriority (IRQn_t IRQn, Set priority for IRQn.

uint32_t priority)

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn.

void NVIC_SystemReset (void) Reset the system.

The input parameter 1ron is the IRQ number, see Table 13 on page 27 for more information.
For more information about these functions, see the CMSIS documentation.

DocID025763 Rev 1 87/110

g

o

electronic com

IO

|

\uf

o

72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals

PM0223

4.3

431

4.3.2

31

30

System Control Block

The System Control Block (SCB) provides system implementation information, and system
control. This includes configuration, control, and reporting of the system exceptions. The

SCB registers are:

Table 30. Summary of the SCB registers

Address Name |Type |Reset value

Description

0xE000EDOO |CPUID |RO 0x410CC601

4.3.2: CPUID Register on page 88.

0xE000EDO04 |ICSR |RWM | 0x00000000

4.3.3: Interrupt Control and State Register (ICSR)
on page 89.

0xE000ED08 |[VTOR |RW 0x00000000

4.3.4: Veector Table Offset Register on page 91.

0xE000EDOC |AIRCR |RWM | 0xFA050000

4.3.5: Application Interrupt and Reset Control
Register on page 91.

0xE000ED10 |[SCR RW 0x00000000

4.3.6: System Control Register on page 92.

0xE000ED14 |CCR RO 0x00000204

4.3.7: Configuration and Control Register on
page 93.

SHPR

0xEOOOED1C 2

RW 0x00000000

System Handler Priority Register 2 on page 94.

SHPR

3 RW

0xEOOOED20 0x00000000

System Handler Priority Register 3 on page 95.

1. See the register description for more information.

The CMSIS mapping of the STM32L0 Cortex-M0+ SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the
CMSIS, the array sup[1] corresponds to the registers SHPR2-SHPRS.

CPUID Register

The CPUID register contains the processor part number, version, and implementation
information. See the register summary in Table 30 on page 88 for its attributes. The bit

assignments are:

29 28 27 26 25 24 23

22 21 20 19 18 17 16

IMPLEMENTER

VARIANT Architecture

| r | r | r r | r | r | r

6 5 4 3 2 1 0

REVISION

88/110

DocID025763 Rev 1

3

g

electronic com

PM0223

n

o

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

\uf

yonen

.f
72

STM32L0 Core Peripherals

Bits 31:24 Implementer: Implementer code
0x41: ARM

Bits 23:20 Variant: Major revision number n in the rnpm revision status:
0x0: Revision 0

Bits 19:16 Architecture: Constant that defines the architecture of the processor:
0xC: ARMv6-M architecture

Bits 15:4 PartNo: Part number of the processor
0xC60: = STM32L0 Cortex-M0O+

Bits 3:0 Revision: Minor revision number m in the rnpm revision status:

0x1: patch 1
4.3.3 Interrupt Control and State Register (ICSR)
The ICSR:
e Provides:
— A set-pending bit for the Non-Maskable Interrupt (NMI) exception.
— Set-pending and clear-pending bits for the PendSV and SysTick exceptions.
e Indicates:
— The exception number of the highest priority pending exception.
See the register summary in Table 30 on page 88 for the ICSR attributes. The bit
assignments are
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
NMIPE PEND | PEND | PEND | PENDS ISRPE)
NDSET| Reserved | SVSET|SVCLR|STSET| TCLR | Reserved | NDING Reserved VECTPENDING(E:4]
rw w w rw w r r | r | r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
_ RETOB .
VECTPENDING(3:0] ASE Foserved VECTACTIVE[8:0]
r | r | r | r r rw I rw I rw | rw | rw | rw | rw | rw | rw

3

DoclD025763 Rev 1 89/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

onents

electronic com

STM32L0 Core Peripherals PMO0223

Table 31. ICSR bit assignments
Bits Name Type | Function

NMI set-pending bit.

Write:

0 = No effect.

1 = Changes NMI exception state to pending.

Read:

0 = NMI exception is not pending.

1 = NMI exception is pending.

Because NMl is the highest-priority exception, normally the
processor enters the NMI exception handler as soon as it detects
a write of 1 to this bit. Entering the handler then clears this bit to 0.
This means a read of this bit by the NMI exception handler returns
1 only if the NMI signal is reasserted while the processor is
executing that handler.

[31] NMIPENDSET |rw

Reserved.

[30:29]

PendSV set-pending bit.

Write:

0 = No effect.

1 = Changes PendSV exception state to pending.
[28] PENDSVSET rw Read:

0 = PendSV exception is not pending.

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception
state to pending.

PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV exception.

[27] PENDSVCLR w

SysTick exception set-pending bit.

Write:

0 = No effect.

[26] PENDSTSET rw 1 = Changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending.

1 = SysTick exception is pending.

SysTick exception clear-pending bit.

Write:

[25] PENDSTCLR w 0 = No effect.

1 = Removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.

[24:18] Reserved.

3

90/110 DocID025763 Rev 1

& [ymnnnm
f

. Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMO0223 STM32L0 Core Peripherals
Table 31. ICSR bit assignments (continued)
Bits Name Type | Function
Indicates the exception number of the highest priority pending
enabled exception:
0 = No pending exceptions.
Nonzero = the exception number of the highest priority pending
enabled exception.
[17:12] | VECTPENDING |r
Subtract 16 from this value to obtain the CMSIS IRQ number that
identifies the corresponding bit in the Interrupt Clear-Enable, Set-
Enable, Clear-Pending, Set-pending, and Priority Register, see
Table 6 on page 16.
[11:0] |- - Reserved.
When you write to the ICSR, the effect is Unpredictable if you:
e write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
e write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.
4.3.4 Vector Table Offset Register
The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary for its attributes.
The bit assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TBLOFF[31:16]
] [w [w [w [w [w [w [w [ow [w [w [[[w [w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TBLOFF[15:7]
Reserved

4.3.5

3

Bits 31:7 TBLOFF Vector table base offset field.
It contains bits[31:7] of the offset of the table base from the bottom of the memory map.

Bits 6:0 Reserved

Application Interrupt and Reset Control Register

The AIRCR provides endian status for data accesses and reset control of the system. To
write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor

ignores the write.

The bit assignments are:

DocID025763 Rev 1 91/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
~ Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

electronic compone

STM32L0 Core Peripherals

PM0223
3 3 20 28 27 26 25 24 23 22 21 20 19 18 17 16
VECTKEYSTAT
15 14 138 12 11 10 9 8 7 6 5 4 3 2 1 0
svs | vect
s RESET| CLR | Resery
Reserved REQ |ACTIVE| o4
r w w

Bits 31:16 VECTKEY Register key
Register key:
Reads as Unknown
On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

Bit 15 ENDIANESS Data endianness bit
Reads as 0.
0: Little-endian

Bits 14:3 Reserved

Bit2 SYSRESETREQ System reset request:
0: No effect

1: Requests a system level reset.
This bit reads as 0.

Bit 1 VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to
this bit, otherwise behavior is unpredictable.

Bit 0 Reserved

4.3.6 System Control Register

The SCR controls features of entry to and exit from low power state. See the register
summary in Table 30 on page 88 for its attributes. The bit assignments are

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEVON steep | SIEEP
Reserved PEND | Res. DEEP EXIT Res.
w rw w
92/110

DocID025763 Rev 1

3

g

electronic com

o

MONC

8

PM0223

\uf

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals

Bits 31:5 Reserved
Bit 4 SEVEONPEND Send Event on Pending bit

Bit 3
Bit 2

0 : Only enabled interrupts or events can wakeup the processor, disabled interrupts are
excluded.

1 = Enabled events and all interrupts, including disabled interrupts, can wakeup the
processor.

When an event or interrupt becomes pending, the event signal wakes up the processor from

WFE. If the processor is not waiting for an event, the event is registered and affects the next
WFE.

The processor also wakes up on execution of an SEV instruction or an external event.
Reserved, must be kept cleared
SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep
1: Deep sleep.

Bit 1 SLEEPONEXIT
Indicates sleep-on-exit when returning from Handler mode to Thread mode. Setting this bit to 1
enables an interrupt-driven application to avoid returning to an empty main application.
0: Do not sleep when returning to Thread mode.
1: Enter sleep, or deep sleep, on return from an ISR to Thread mode.
Bit 0 Reserved, must be kept cleared
4.3.7 Configuration and Control Register
The CCR is a read-only register and indicates some aspects of the behavior of the
STM32L0 Cortex-MO+ processor. See the register summary in Table 30 on page 88 for the
CCR attributes.
The bit assignments are
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
NON
STK | BFHF DIV_0_ ALLIJG'\'N USSEETR BASE
Reserved ALIGN | NMIGN Reserved TRP TRP | Res. |MPEND T;NRAD
rw w w rw w w

3

Bits 31:10 Reserved, must be kept cleared

Bit9

STKALIGN
Always reads as one, indicates 8-byte stack alignment on exception entry.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack

alignment. On return from the exception it uses this stacked bit to restore the correct stack
alignment.

DoclD025763 Rev 1 93/110

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

n

g

'-
(ol

.f
72

IOL

electronic com

STM32L0 Core Peripherals PMO0223

Bits 8:4 Reserved, must be kept cleared

Bit 3 UNALIGN_ TRP
Always reads as one, indicates that all unaligned accesses generate a HardFault.

Bit 2:0 Reserved, must be kept cleared

4.3.8 System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the system exception
handlers that have configurable priority.

SHPR2-SHPR3 are word accessible. See the register summary in for their attributes.

To access the system exception priority level using CMSIS, use the following CMSIS
functions:

° uint32_t NVIC_GetPriority (IRQn_Type IRQn)
° void NVIC_SetPriority (IROn_Type IRQOn, uint32_t priority)

The input parameter IRQn is the IRQ number, see Table 13 on page 27 for more
information.

The system handlers, and the priority field and register for each handler are:

Table 32. System fault handler priority fields

Handler Field Register description
SVCall PRI_11 System Handler Priority Register 2 on page 94.
PendSV PRI_14

- System Handler Priority Register 3 on page 95.
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field,
and bits[5:0] read as zero and ignore writes.

System Handler Priority Register 2

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PRI_6[7:4] PRI_6[3:0]
Reserved
w [w [w [w | ¢ [[¢] v
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
PRI_5[7:4] PRI_5[3:0] PRI_4[7:4] PRI_4[7:4]
rw | rw | w | rw r | r | r | r w l rw | w | w r | r | r | r

Bits 31:24 PRI_11: Priority of system handler 11, SVCall.

Bits 23:0 Reserved, must be kept cleared

3

94/110 DocID025763 Rev 1

punnnm|

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMO0223 STM32L0 Core Peripherals
System Handler Priority Register 3
The bit assignments are
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PRI_15 PRI_14
rw | rw | rw | w | r | r | r | r rw | rw | rw | rw | r | r | r | r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved |

Bits 31:24 PRI_15: Priority of system handler 15, SysTick exceptionm

Bits 23:16 PRI_14: Priority of system handler 14, PendSV

Bits 15:0 Reserved, must be kept cleared

1. This is Reserved when the SysTick timer is not implemented.

4.3.9

4.4

Note:

3

SCB usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

SysTick timer (STK)

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the
value in the SYST_RVR on the next clock cycle, then decrements on subsequent clock
cycles. Writing a value of zero to the SYST_RVR disables the counter on the next wrap.
When the counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading
SYST_CSR clears the COUNTFLAG bit to 0.Writing to the SYST_CVR clears the register
and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic.
Reading the register returns its value at the time it is accessed.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 33. System timer registers summary

Address Name Type Re_q_u ired Reset value Description
privilege
- 4.4.1: SysTick Control and Status
0xE000E010 |STK_CSR |RW |Privileged | 0x00000000 Register (STK_CSR) on page 96.
- 4.4.2: SysTick Reload Value
0xE000E014 [STK_RVR |RW |Privileged | Unknown Register (STK_RVR) on page 96.
- 4.4.3: SysTick Current Value
0xE000E018 [STK_CVR |RW |Privileged | Unknown Register (STK_CVR) on page 97.
4.4.4: SysTick Calibration Value
0xE000E0LC | STK_CALIB |RO |Privileged | 0xC0000000 ! | Register (STK_CALIB) on
page 97.

1.

SysTick calibration value.

DocID025763 Rev 1

95/110

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
III;;::I

o

: 'l

.f
72

electronic compot

STM32L0 Core Peripherals PMO0223

441 SysTick Control and Status Register (STK_CSR)

The SYST_CSR enables the SysTick features. See the register summary in Table 33 on
page 95 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
rc_r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved
rw rw rw

Bits31:17 Reserved, must be kept cleared.

Bit 16 COUNTFLAG Returns 1 if timer counted to O since the last read of this register.

Bits 15:3 Reserved, must be kept cleared.

Bit 2 CLKSOURCE Selects the SysTick timer clock source:
0 = External reference clock.
1 = Processor clock.
Bit 1 TICKINT Enables SysTick exception request:
0 = Counting down to zero does not assert the SysTick exception request.
1 = Counting down to zero to asserts the SysTick exception request.
Bit 0 ENABLE Enables the counter:

0 = Counter disabled.
1 = Counter enabled.

4.4.2 SysTick Reload Value Register (STK_RVR)

The STK_RVR specifies the start value to load into the SYST_CVR. See the register
summary in Table 33 on page 95 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RELOAD
Reserved
w | w | w | w | w | rw | w | w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RELOAD
w [w [w [ow [w | w] w | w | w] w] w] w] w] w] w] m

Bits31:24 Reserved, must be kept cleared.

Bits 23:0 RELOAD Value to load into the STK_CVR when the counter is enabled and when it reaches 0,
see Calculating the RELOAD value on page 96.

Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can

program a value of 0, but this has no effect because the SysTick exception request and
COUNTFLAG are activated when counting from 1 to 0.

96/110 DoclD025763 Rev 1 ‘Yl

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
~ Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ws
Ll

clectronic compone

PMO0223 STM32L0 Core Peripherals

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD

value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

443 SysTick Current Value Register (STK_CVR)

The STK_CVR contains the current value of the SysTick counter. See the register summary
in Table 33 on page 95 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CURRENT
Reserved
rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w
15 14 13 12 11 10 9 8 7 6 3 2 1 0
CURRENT
rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w I rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w

Bits31:24 Reserved, must be kept cleared.

Bits 23:0 CURRENT Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to
0.

444 SysTick Calibration Value Register (STK_CALIB)

The STK_CALIB register indicates the SysTick calibration properties. See the register
summary in Table 33 on page 95 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
F’;‘g: SKEW Focorved TENMS[23:16]

r r r l r | r | r l r | r | r | r
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TENMS[15:0]

r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r

Bit 31 NOREF: Reads as zero. Indicates that separate reference clock is provided. The frequency of
this clock is HCLK/8.

Bit 30 SKEW: Reads as one. Calibration value for the 1ms inexact timing is not known because
TENMS is not known. This can affect the suitability of SysTick as a software real time clock.
Bits 29:24 Reserved, must be kept cleared.

Bits 23:0 TENMS[23:0]:

Indicates the calibration value when the SysTick counter runs on HCLK max/8 as external
clock. The value is product dependent, please refer to the Product Reference Manual, SysTick

Calibration Value section. When HCLK is programmed at the maximum frequency, the SysTick
period is 1ms.

If calibration information is not known, calculate the calibration value required from the
frequency of the processor clock or external clock.

3

DocID025763 Rev 1 97/110

g

electronic com

")

-
\uf

yonen

o
72

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals PMO0223

445

4.5

98/110

SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for
low power mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct
initialization sequence for the SysTick counter is:

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

Memory Protection Unit

This section describes the Memory Protection Unit (MPU).

The MPU can divide the memory map into a number of regions, and defines the location,
size, access permissions, and memory attributes of each region. It supports:

e Independent attribute settings for each region.

e Overlapping regions.

e Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The STM32L0
Cortex-M0O+ MPU defines:

e Eight separate memory regions, 0-7.

e A background region.

When memory regions overlap, a memory access is affected by the attributes of the region

with the highest number. For example, the attributes for region 7 take precedence over the
attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory
map, but is accessible from privileged software only.

The STM32L0 Cortex-M0+ MPU memory map is unified. This means instruction accesses
and data accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor
generates a HardFault exception.

In an OS environment, the kernel can update the MPU region setting dynamically based on
the process to be executed. Typically, an embedded OS uses the MPU for memory
protection.

Configuration of MPU regions is based on memory types, see 2.2.1: Memory regions, types
and attributes on page 20.

Table 34 on page 99 shows the possible MPU region attributes. These include Shareability
and cache behavior attributes that are not relevant to most microcontroller implementations.
See MPU configuration for a microcontroller on page 107 for guidelines for programming
such an implementation.

3

DocID025763 Rev 1

ws
Ll

one

clectronic compone

s

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMO0223 STM32L0 Core Peripherals
Table 34. Memory attributes summary
Memory type Shareability | Other attributes | Description
All accesses to Strongly-ordered memory
Strongly- ordered | - - occur in program order. All Strongly-ordered
regions are assumed to be shared.
Device Shared) Memory-mapped peripherals that several
processors share.
Non-shared |- Memory-mapped peripherals that only a
single processor uses.
Non-cacheable
Write-through Normal memory that is shared between
Normal Shared .
Cacheable Write- | several processors.
back Cacheable
Non-cacheable
Non-shared Write-through . Normal memory that only a single processor
Cacheable Write- | uses.
back Cacheable
Use the MPU registers to define the MPU regions and their attributes. Table 35 on page 99
shows the MPU registers
Table 35. MPU registers summary
Address Name Type Reset Description
value
0x00000000 or 4.5.1: MPU Type Register on
0xE000ED90 |MPU_TYPE |RO 0%00000800 (1) page 99.
0xE000ED94 |MPU_CTRL |RW |0x00000000 4.5.2: MPU Control Register on
page 100.
0xE000ED98 |MPU_RNR |RW | Unknown 4.5.3: MPU Region Number
Register on page 101.
0xE000EDIC |MPU RBAR |RW | Unknown 4.5.4: MPU Region Base Address
Register on page 102.
0XE000EDAO |MPU_RASR |RW |Unknown 4.5.5- MPU Region Attribute and
- Size Register on page 103.
1. Software can read the MPU Type Register to test for the precence of a Memory Protection Unit (MPU).
See MPU Type Register
4.5.1 MPU Type Register

31 30

The MPU_TYPE register indicates whether the MPU is present, and if so, how many

regions it supports. See the register summary in Table 35 on page 99 for its attributes. The
bit assignments are:

29 28

27

26 25

24 23

22

21 20 19 18 17 16

Reserved

IREGION[7:0]

[

|
[S7d

DocID025763 Rev 1

99/110

g

electronic compot

/.

\uf

s

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals

PMO0223
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEPA
DREGION[7:0]
Reserved RATE
r|r|r|r|r|r|r|r r

Bits 31:24 Reserved.

Bits 23:16 IREGION][7:0]: Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION

field.

Bits 15:8 DREGION][7:0]: Indicates the number of supported MPU data regions:
0x00 = Zero regions if your device does not include the MPU.
0x08 = Eight regions if your device includes the MPU.
Bits 7:1 Reserved.

Bit 0 SEPARATE: Indicates support for unified or separate instruction and date memory maps:

0 = Unified.
4.5.2 MPU Control Register
The MPU_CTRL register:
e Enables the MPU.
e Enables the default memory map background region.
e Enables use of the MPU when in the HardFault or Non-Maskable Interrupt (NMI)
handler.
See the register summary in Table 35 on page 99 for the MPU_CTRL attributes. The bit
assignments are:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PRIVD | HFNMI | EN
EFENA| ENA | ABLE
- r r r r r [@ [[[[w]w][m
100/110

DocID025763 Rev 1

3

g

o

electronic com

PM0223

")

\uf

Yonen

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals

4.5.3

3

Bits 31:3 Reserved, forced by hardware to 0.

Bit 2 PRIVDEFENA: Enable privileged software access to default memory map.

0: If the MPU is enabled, disables use of the default memory map. Any memory access to a
location not covered by any enabled region causes a fault.

1: If the MPU is enabled, enables use of the default memory map as a background region for
privileged software accesses.

Note: When enabled, the background region acts as if it is region number -1. Any region that
is defined and enabled has priority over this default map.

If the MPU is disabled, the processor ignores this bit.

Bit 1 HFNMIENA: Enables the operation of MPU during HardFault and NMI handlers.
When the MPU is enabled:

0 = MPU is disabled during HardFault and NMI handlers, regardless of the value of the
ENABLE bit.

1 = the MPU is enabled during HardFault and NMI handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

Bit 0 ENABLE: Enables the MPU
0: MPU disabled
1: MPU enabled

When ENABLE and PRIVDEFENA are both set to 1:

e For privileged accesses, the default memory map is as described in 2.2: Memory
model on page 20. Any access by privileged software that does not address an
enabled memory region behaves as defined by the default memory map.

e Any access by unprivileged software that does not address an enabled memory region
causes a MemManage fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the
value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled
for the system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is
set to 1 and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the
same memory attributes as if the MPU is not implemented, see Table 11 on page 22. The
default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are
always permitted. Other areas are accessible based on regions and whether PRIVDEFENA
is setto 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the
handler for an exception with priority —1 or —2. These priorities are only possible when
handling a HardFault or NMI exception. Setting the HFNMIENA bit to 1 enables the MPU
when operating with these two priorities.

MPU Region Number Register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and
MPU_RASR registers. See the register summary in Table 35 on page 99 for its attributes.
The bit assignments are:

DocID025763 Rev 1 101/110

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

n

g

'l.
(ol

.f
72

IOL

electronic com

STM32L0 Core Peripherals PMO0223
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved REGION

- r r r r tr ; ; + & @ [[[|

Bits31:8 Reserved, must be kept cleared.

Bits 7:0 |REGION Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.
he MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the
MPU_RBAR or MPU_RASR. However you can change the region number by writing to the
MPU_RBAR with the VALID bit set to 1, see MPU Region Base Address Register on

page 102. This write updates the value of the REGION field.

4.5.4 MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR,
and writes to this register can update the value of the MPU_RNR. See the register summary
in Table 35 on page 99 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and
update the MPU_RNR. The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADDR[31:N]...
w | w [w | w | w | w] w] w] w [w] w] w] w] w] w]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
....ADDR[31:N] VALID REGION[3:0]
w | rw | w | w | w | w | w | w | w | w | w w w | w | w | w

Bits 31:N ADDR[31:N]: Region base address field

The value of N depends on the region size.
For more information, see The ADDR field

3

102/110 DocID025763 Rev 1

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

1]
7

yonen

.f
72

electronic com

PMO0223 STM32L0 Core Peripherals

Bits N-1:5 Reserved, forced by hardware to 0.

Bit 4 VALID: MPU region number valid
Write:
0: MPU_RNR register not changed, and the processor:
- Updates the base address for the region specified in the MPU_RNR

— Ignores the value of the REGION field
1: the processor:

— updates the value of the MPU_RNR to the value of the REGION field

— updates the base address for the region specified in the REGION field.
Read:

Always read as zero.

Bits 3:0 REGION[3:0]: MPU region field
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR register.

If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE
field in the MPU_RASR, defines the value of N:

N = Logs(Region size in bytes),
If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In

this case, the region occupies the complete memory map, and the base address is
0x00000000.

The base address must be aligned to the size of the region. For example, a 64KB region
must be aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

455 MPU Region Attribute and Size Register

The MPU_RASR defines the region size and memory attributes of the MPU region specified
by the MPU_RNR, and enables that region and any subregions. See the register summary
in Table 34 on page 99 for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved XN Re:f"’ AP[2:0] Reserved s c B
| | rw rw | rw | rw | | rw | rw | rw rw rw rw
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SRD[7:0] Reserved SIZE AEII_IE
rw | rw | w | rw | rw | w | rw | rw | rw | rw | rw | rw | w rw

Bits 31:29 Reserved

Bit 28 XN: Instruction access disable bit:
0 = Instruction fetches enabled.
1 = Instruction fetches disabled.

Bit 27 Reserved, forced by hardware to 0.

3

DocID025763 Rev 1 103/110

.

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

L]
III;;::I

o

: 'l

.f
72

electronic compot

STM32L0 Core Peripherals PMO0223

Bits 26:24 AP[2:0]: Access permission field, see Table 38: AP encoding
Bits 23:19 Reserved, forced by hardware to 0.

Bit 18 S: Shareable bit see Table 37 on page 105

Bit 17 C: Cacheable bit see Table 38 on page 105

Bit 16 B: Bufferable bit, see Table 37 on page 105

Bits 15:8 SRD: Subregion disable bits.
For each bit in this field:
0 = Corresponding sub-region is enabled.
1 = Corresponding sub-region is disabled.
See Subregions on page 106 for more information.

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:1 SIZE: Size of the MPU protection region.

Specifies the size of the MPU region. The minimum permitted value is 7 (b00111). See SIZE
field values on page 104 for more information

Bit 0 ENABLE: Region enable bit(!).

1. The region enable bit of all regions is reset to 0. This enables you to only program regions you want enabled.

For information about access permission, see MPU access permission attributes on
page 104.

SIZE field values

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as
follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 256B, corresponding to a SIZE value of 7. Table 36
gives example SIZE values, with the corresponding region size and value of N in the

MPU_RBAR
Table 36. Example SIZE field values
SIZE value Region size Value of N(") Note
b00111 (7) 256B 8 Minimum permitted size.
b01001 (9) 1KB 10 -
b10011 (19) 1MB 20 -
b11101 (29) 1GB 30 -
b11111 (31) 4GB 32 Maximum possible size.

1. Inthe MPU_RBAR, see MPU Region Base Address Register on page 102.

4.5.6 MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits,
C, B, S, AP, and XN, of the MPU_RASR, control access to the corresponding memory
region. If an access is made to an area of memory without the required permissions, then
the MPU generates a permission fault.

104/110 DoclD025763 Rev 1 ‘Yl

ws
Ll

electronic com

Yonen

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PMO0223 STM32L0 Core Peripherals
Table 37 shows the encodings for the C, B, and S access permission bits
Table 37. C, B, and S encoding
C |B |S |Memory type Shareability | Other attributes
0 0 |- |strongly-ordered |Shareable -
1 |- | Device Shareable -
0 Not shareable
0 Normal Outer and inner write-through. No write allocate.
) 1 Shareable
0 Not shareable
1 Normal Outer and inner write-back. No write allocate.
1 Shareable
1. The MPU ignores the value of this bit.
Table 38 shows the AP encodings that define the access permissions for privileged and
unprivileged software
Table 38. AP encoding
Privileged Unprivileged L.
AP[2:0] e L. Description
permissions |permissions
000 No access No access All accesses generate a permission fault.
001 RW No access Access from privileged software only.
010 RW RO Writes by unprivileged software generate a permission
fault.
011 RW RW Full access.
100 Unpredictable |Unpredictable |Reserved.
101 RO No access Reads by privileged software only.
110 RO RO Read only, by privileged or unprivileged software.
111 RO RO Read only, by privileged or unprivileged software.
4.5.7 MPU mismatch
When an access violates the MPU permissions, the processor generates a HardFault.
4.5.8 Updating an MPU region

3

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers.

Updating an MPU region

Simple code to configure one region:

; R1
; R2
; R3
; R4

LDR RO,

region number

size/enable
attributes
address
=MPU_RNR

; OxEOOOEDSS,

DocID025763 Rev 1

MPU region number register

105/110

& [ymnnnm
f

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals PMO0223
STR R1, [RO, #0x0] ; Region Number
STR R4, [RO, #0x4] ; Region Base Address
STRH R2, [RO, #0x8] ; Region Size and Enable
STRH R3, [RO, #0xA] ; Region Attribute

106/110

Software must use memory barrier instructions:

e Before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings.

e After MPU setup if it includes memory transfers that must use the new MPU settings.

However, an instruction synchronization barrier instruction is not required if the MPU setup
process starts by entering an exception handler, or is followed by an exception return,
because the exception entry and exception return mechanism cause memory barrier
behavior.

For example, if you want all of the memory access behavior to take effect immediately after
the programming sequence, use a DSB instruction and an ISB instruction. A DSB is required
after changing MPU settings, such as at the end of context switch. An ISB is required if the
code that programs the MPU region or regions is entered using a branch or call. If the
programming sequence is entered using a return from exception, or by taking an exception,
then you do not require an ISB.

Subregions

Regions are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR to disable a subregion, see MPU Region Attribute and Size Register
on page 103. The least significant bit of SRD controls the first subregion, and the most
significant bit controls the last subregion. Disabling a subregion means another region
overlapping the disabled range matches instead. If no other enabled region overlaps the
disabled subregion the MPU issues a fault.

Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two is
512KB. To ensure the attributes from region one apply to the first 128KB region, set the
SRD field for region two to b00000011 to disable the first two subregions, as the figure
shows.

Figure 13. Example of SRD use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB
128KB
64KB
0

Disabled subregion
Disabled subregion

Base address of both regions

MS33835V1

3

DocID025763 Rev 1

ws
Ll

yonen

clectronic componen

PM0223

is

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STM32L0 Core Peripherals

4.5.9

3

MPU design hints and tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a
region that the interrupt handlers might access.

When setting up the MPU, and if the MPU has previously been programmed, disable
unused regions to prevent any previous region settings from affecting the new MPU setup.

MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a
system, program the MPU as follows:

Table 39. Memory region attributes for a microcontroller

Memory region |C |B |S |Memory type and attributes

Flash memory 1 0 0 Normal memory, Non-shareable, write-through.
Internal SRAM 1 0 1 Normal memory, Shareable, write-through.

External SRAM 1 1 1 Normal memory, Shareable, write-back, write-allocate.
Peripherals 0 1 1 Device memory, Shareable.

In most microcontroller implementations, the shareability and cache policy attributes do not
affect the system behavior. However, using these settings for the MPU regions can make
the application code more portable. The values given are for typical situations. In special
systems, such as multiprocessor designs or designs with a separate DMA engine, the
shareability attribute might be important. In these cases refer to the recommendations of the
memory device manufacturer.

DocID025763 Rev 1 107/110

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
ctronic components Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

1]
LT
Ll

-

STM32L0 Core Peripherals PMO0223

4.6 I/O Port

STM32L0 Cortex-MO+ implements a dedicated 1/O port for high-speed, low-latency access
to peripherals. The 1/O port is memory mapped and supports all the load and store

instructions given in Memory access instructions on page 45. The 1/O port does not support
code execution.

The STM32L0 general-purpose 1/Os are accessed through the I/O port.
The I/O port can be protected by the MPU.

108/110 DocID025763 Rev 1

3

]

electronic components

J

Wl

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PM0223 Revision history
5 Revision history
Table 40. Document revision history
Date Revision Changes
15-Apr-2014 1 Initial release.
Kyy DoclD025763 Rev 1 109/110

"I

|

Distributor of STMicroelectronics: Excellent Integrated System Limited
Datasheet of STM32L062K8T6 - IC MCU 32BIT 64KB FLASH 32LQFP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

")

| 1
\uf

.
z |

PM0223

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”") reserve the

right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

110/110 DoclD025763 Rev 1 ‘Yl

http://www.tcpdf.org
http://www.tcpdf.org

