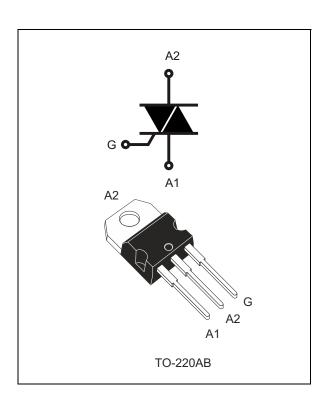
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics T610T-8T

For any questions, you can email us directly: sales@integrated-circuit.com



T610T-8T

6 A logic level Triac

Datasheet - production data

Description

Available in through-hole package, the T610T-8T Triac can be used for the on/off or phase angle control function in general purpose AC switching. This device can be directly driven by a microcontroller due to its 10 mA gate current requirement.

Table 1. Device summary

Symbol	Value	Unit
I _{T(rms)}	6	А
V_{DRM}, V_{RRM}	800	V
V _{DSM} , V _{RSM}	900	V
I _{GT}	10	mA

Features

- Medium current Triac
- · Three quadrants
- ECOPACK®2 compliant component

Applications

- · General purpose AC line load switching
- Motor control circuits
- · Small home appliances
- Lighting
- · Inrush current limiting circuits
- Overvoltage crowbar protection

Characteristics T610T-8T

1 Characteristics

Table 2. Absolute ratings (limiting values, $T_j = 25$ °C unless otherwise stated)

Symbol	Parameter			Value	Unit
I _{T(rms)}	On-state rms current (full sine wave)		T _c = 135 °C	6	Α
1.	Non repetitive surge peak on-state	f = 50 Hz	t = 20 ms	45	Α
I _{TSM}	current (full cycle, T _j initial = 25 °C)	f = 60 Hz	t = 16.7 ms	47	^
l ² t	I ² t value for fusing, T _j initial = 25 °C		t _p = 10 ms	13	A ² s
V _{DRM} ,	Repetitive surge peak off-state volta	T _j = 150 °C	600	V	
V_{RRM}	Repetitive surge peak oil-state voita	T _j = 125 °C	800	V	
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state v	t _p = 10 ms	900	V	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$		F = 100 Hz	100	A/μs
I _{GM}	Peak gate current $t_p = 20 \mu s$		T _j = 150 °C	4	Α
P _{G(AV)}	Average gate power dissipation $T_j = 150^{\circ}$ C			1	W
T _{stg}	Storage junction temperature range			- 40 to + 150	°C
Tj	Operating junction temperature range			- 40 to + 150	<u> </u>
T_L	Maximum lead temperature for soldering during 10 s			260	°C

Table 3. Electrical characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test conditions	Quadrant		Value	Unit
	$V_D = 12 \text{ V}, R_L = 30 \Omega$	1 11 111	Min.	0.5	A
I _{GT}		1 - 11 - 111	Max.	10	- mA
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$	1 - 11 - 111	Max.	1.3	V
$V_{\sf GD}$	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 150 \text{ °C}$	1 - 11 - 111	Min.	0.2	V
I _H ⁽¹⁾	I _T = 500 mA		Max.	15	mA
	I _G = 1.2 I _{GT}	1 - 111	Max.	20	mA
۱L		II		25	
dV/dt ⁽¹⁾	$V_D = V_R = 536 \text{ V, gate open}$	T _j = 125 °C	N 4:	250	V/µs
uv/ut\ /	$V_D = V_R = 402 \text{ V, gate open}$	T _j = 150 °C	Min.	170	V/µs
(dl/dt)c ⁽¹⁾	(dV/dt)c = 0.1 V/μs	T _j = 125 °C	Min.	5.2	A/ms
(ai/at)c(1)		T _j = 150 °C		3.7	
(dl/dt)c ⁽¹⁾	(1) (1)	T _j = 125 °C	Min.	2.7	A /ma
(al/at)c···	$(dV/dt)c = 10 V/\mu s$	T _j = 150 °C	IVIIII.	1.2	- A/ms

^{1.} For both polarities of A2 referenced to A1

2/9 DocID026309 Rev 1

T610T-8T Characteristics

Table 4. Static characteristics

Symbol	Test conditions		Value	Unit	
V _T ⁽¹⁾	I _{TM} = 8.5 A, t _p = 380 μs	T _j = 25 °C	Max.	1.55	V
V _{t0} (1)	Threshold voltage	T _j = 150 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	75	mΩ
I _{DRM}	V -V - 900 V	T _j = 25 °C	Max.	5	μΑ
	$V_{DRM} = V_{RRM} = 800 \text{ V}$	T _j = 125 °C		0.6	A
I _{RRM}	V _{DRM} = V _{RRM} = 600 V	T _j = 150 °C	Max.	2.0	⊢ mA

^{1.} For both polarities of A2 referenced to A1

Table 5. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	2.1	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	°C/W

Figure 1. Maximum power dissipation versus on-state rms current

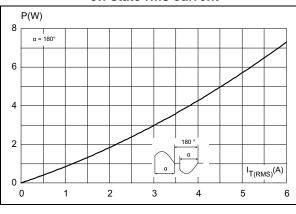


Figure 2. On-state rms current versus case temperature

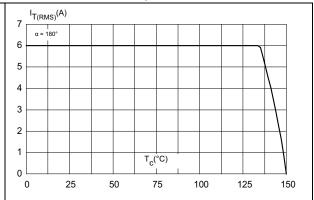


Figure 3. On-state rms current versus ambient temperature (free air convection)

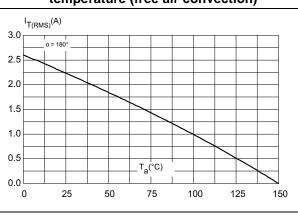
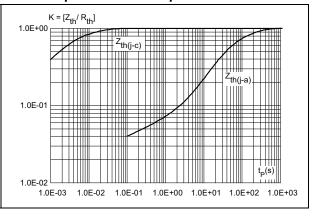



Figure 4. Relative variation of thermal impedance versus pulse duration

Characteristics T610T-8T

Figure 5. On-state characteristics (maximum values)

 $I_{TM}(A)$ 100 T max: 0.85 V $V_{to}^{\perp} = 0.85 \text{ V}$ $R_d = 75 \text{ m}\Omega$ 10 = 150 °C = 25 °C $V_{TM}(V)$ 0.0 2.0 2.5 3.5 4.0 0.5 1.0 1.5 3.0

Figure 6. Surge peak on-state current versus number of cycles

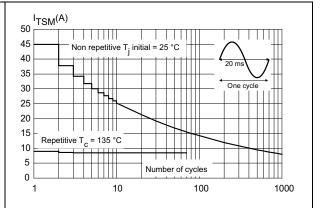
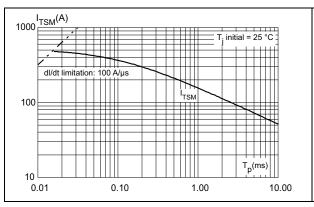



Figure 7. Non repetitive surge peak on-state current

Figure 8. Relative variation of gate trigger current and gate voltage versus junction temperature (typical values)

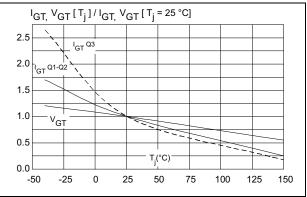
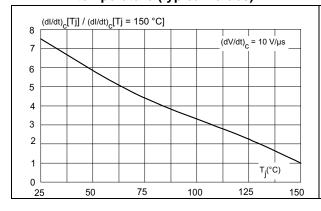
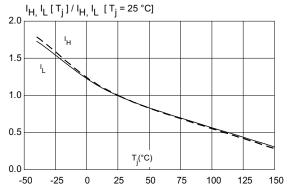
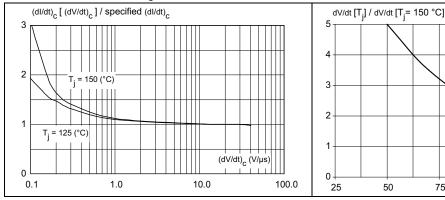




Figure 9. Relative variation of critical rate of decrease of main current versus junction temperature (typical values)

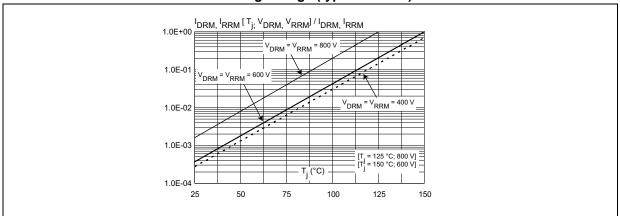
Figure 10. Relative variation of holding current and latching current versus junction temperature (typical values)

4/9 DocID026309 Rev 1



T610T-8T Characteristics

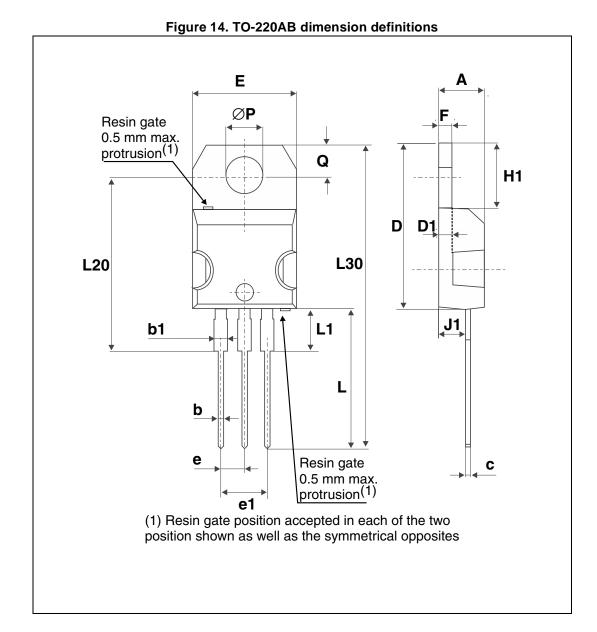
Figure 11. Relative variation of critical rate of decrease of main current (dl/dt)_C versus reapplied (dV/dt)_C (maximum values)


Figure 12. Relative variation of static dV/dt immunity versus junction temperature (typical values)

V_D = V_R = 402 V; 150 (°C)

2 1 1 0 25 50 75 100 125 150

Figure 13. Relative variation of leakage current versus junction temperature for different values of blocking voltage (typical values)


6/9

Package information T610T-8T

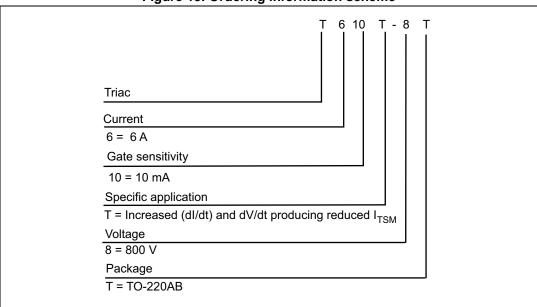
2 Package information

- Epoxy meets UL94, V0
- Lead-free package
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

T610T-8T Package information

Table 6. TO-220AB dimension values


	Dimensions				
Ref.	Millimeters		Incl	hes	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.17	0.18	
b	0.61	0.88	0.024	0.035	
b1	1.14	1.70	0.045	0.067	
С	0.48	0.70	0.019	0.027	
D	15.25	15.75	0.60	0.62	
D1	1.27 typ.		0.05 typ.		
E	10	10.40	0.39	0.41	
е	2.40	2.70	0.094	0.106	
e1	4.95	5.15	0.19	0.20	
F	1.23	1.32	0.048	0.052	
H1	6.20	6.60	0.24	0.26	
J1	2.40	2.72	0.094	0.107	
L	13	14	0.51	0.55	
L1	3.50	3.93	0.137	0.154	
L20	16.40 typ.		0.64 typ.		
L30	28.90 typ.		1.13 typ.		
ØP	3.75	3.85	0.147	0.151	
Q	2.65	2.95	0.104	0.116	

Ordering information T610T-8T

3 Ordering information

Figure 15. Ordering information scheme

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T610T-8T	T610T-8T	TO-220AB	2.0 g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
07-Nov-2014	1	Initial release.

8/9 DocID026309 Rev 1

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of T610T-8T - TRIAC 800V 6A 10MA TO-220AB

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

T610T-8T

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

