LV0229XA

ON Semiconductor®

Monolithic Linear IC

Front Monitor OE-IC for Optical Pickups

http://onsemi.com

Overview

The LV0229XA is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0229XA is small size and type CSP packages.

Functions

- Pin photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-5dB to +5dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Features

- Photodiode compatible with three wavelengths incorporated, high-speed process employed.
- Compact, thin CSP package employed.
- Use AR coated glass for three-wavelength (One side).

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC		6	V
Allowable power dissipation	Pd	substrate *1, Ta = 75°C	105	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +100	°C

^{*1:} Glass epoxy both-side substrate 55mm × 45mm × 1mm, Copper foil area (head: about 85% tail: about 70%)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LV0229XA

Recommended Operating Conditions at Ta = 25°C

Danamatan	Completed	O and distance		I I mit			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Operating supply voltage	Vcc		4.5	5	5.5	V	
Output load capacitance	Со		12	20	33	pF	
Output load resistance	Zo		3			kΩ	

Electrical and Optical Characteristics at $Ta=25^{\circ}C,\ V_{CC}=5V,\ R_{L}=6k\Omega,\ C_{L}=20pF$

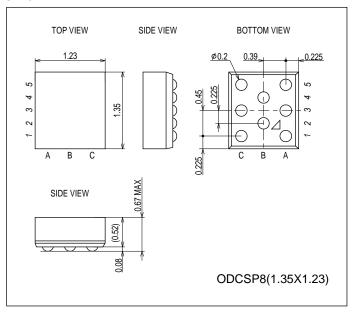
Parameter	Symbol	Conditions	IV Gain		Ratings		Unit	
raiametei	Symbol	Conditions	IV Gaiii	min	typ	max	Onit	
Current dissipation	Icc			9	14	19	mA	
Sleep current	Islp				0.2	0.5	mA	
Output voltage when shielded	Vc	At shielding		1.85	2	2.15	V	
Output offset voltage	Vofs	At shielding, voltage between VOP-VON		-30	0	30	mV	
Temperature dependence of offset voltage *1	Vofs	Ta = -10 to +75°C		-60	0	60	μV/°C	
Optical output voltage *1	VLC		Low	1.93	2.41	2.90		
Voltage between VOP-VON	VH1C	$\lambda = 780$ nm, G = 0dB	Middle	4.58	5.73	6.87		
	VH2C		High	10.86	13.58	16.29		
	VLD		Low	2.03	2.54	3.05		
	VH1D	$\lambda = 650$ nm, G = 0dB	Middle	4.82	6.02	7.23	mV/μW	
	VH2D		High	11.42	14.28	17.13		
	VLB		Low	1.27	1.59	1.90		
	VH1B	$\lambda = 405$ nm, G = 0dB	Middle	3.01	3.76	4.52		
	VH2B		High	7.14	8.92	10.71		
Light output voltage adjustment range *1	G	G = 0dB reference, absolute value of adjustment width		4.5	5	5.5	dB	
Output saturation voltage *1	VoD	Voltage between VOP-VON		2000			mV	
Frequency characteristics *1, *2	FcC	-3dB (1MHz reference), λ = 780nm Light input = 40 μ W (DC) + 20 μ W (AC)		40	60			
	FcD1	-3dB (1MHz reference), λ = 650nm Light input = 40 μ W (DC) + 20 μ W (AC)	Low Middle	60	85		1	
	FcD2	-3dB (1MHz reference), λ = 650nm Light input = 40 μ W (DC) + 20 μ W (AC)	High	50	70		MHz	
	FcB1	-3dB (1MHz reference), λ = 405nm Light input = 40 μ W (DC) + 20 μ W (AC)	Low Middle	60	85			
	FcB2	-3dB (1MHz reference), λ = 405nm Light input = 40μW (DC) + 20μW (AC)	High	50	70			
Settling time *1	Tset				10	15	ns	
Response time *1	Tr, Tf	Vo = 0.9Vp-p, output level 10 to 90% fc = 10MHz, duty = 50%			4	10	ns	
Linearity *1	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)		-1	0	1	%	
Light-output voltage temperature dependence	TC	λ = 780nm, 25°C reference		4	7	10	%	
Voltage between VOP-VON *1, *3	TD	λ = 650nm, 25°C reference		-3	0	3	%	
	ТВ	λ = 405nm, 25°C reference		-4	-1	2	%	

Item with *1 mark indicate the design reference value.

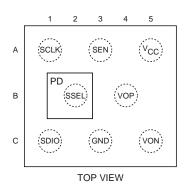
Item with *2 mark indicate the frequency characteristics when VOP and VON are applied individually.

The frequency characteristics are for the output voltage adjustment range is -5 to +5dB.

Item with *3 mark indicates the temperature dependence for the case of High / Middle / Low gain and for the case when the temperature is 25 to 75°C for the output voltage adjustment range of -5 to +5dB.

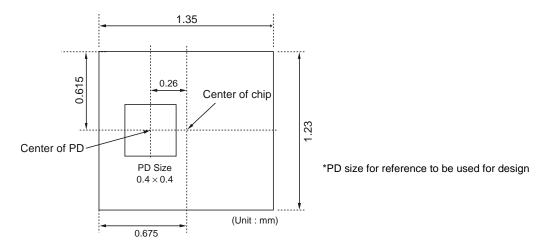

[Expression of output voltage]

Vn = (sensitivity / 1.78) \times 5221 / (5221 - 14 \times GCAstep) \times light intensity (µW)

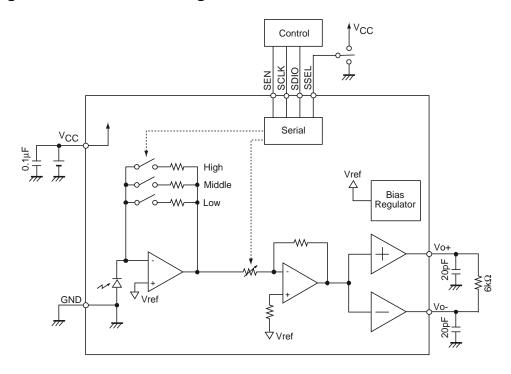

Package Dimensions

unit: mm (typ)

3446



Pin Assignment



Pin No.	Pin name	Function
A1	SCLK	Serial communication Clock pin
А3	SEN	Serial communication Enable pin
A5	VCC	Power supply voltage pin
B2	SSEL	Register selection pin
		SSEL = Low: Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
		SSEL = Open : Address 70 to 7Fh used
B4	VOP	Positive side output pin
C1	SDIO	Serial communication Data pin
C3	GND	GND pin
C5	VON	Negative side output pin

PD assignment

Block diagram and Test circuit diagram

^{*} Please place decoupling capacitors within 3mm from pin

Resister table

Enable selection of the register group from the SSEL pin.

SSEL = Low

	Address	7	6	5	4	3	2	1	0
Name		PO	POWER		IV GAIN SEL				
Default		0	00		00		0	0	0
	00h	11: Power on		00/01: High					
Value		00/01/10: Sleep		10: Middle					
					11: Low				
Name			GAIN						
Default	01h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	0Eh		TEST1 (*1)						

SSEL = High

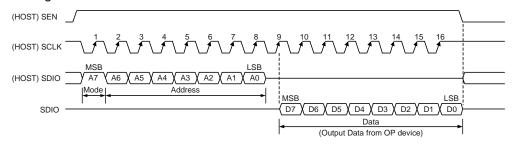
	Address	7	6	5	4	3	2	1	0
Name		POWER		IV GAIN SEL					
Default		C	00		00		0	0	0
Value	10h	11: Power on 00/01/10: Sleep		00/01: High 10: Middle 11: Low					
Name			GAIN						
Default	11h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	1Eh		TEST1 (*1)						

SSEL = Open

SSEL - C	Address	7	6	5	4	3	2	1	0
Name		PO	POWER		IV GAIN SEL				
Default		(00		00		0	0	0
	70h	11: Power on		00/01: High					
Value		00/01/10: Sleep		10: Middle					
					11: Low				
Name			GAIN						
Default	71h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	7Eh		TEST1 (*1)						

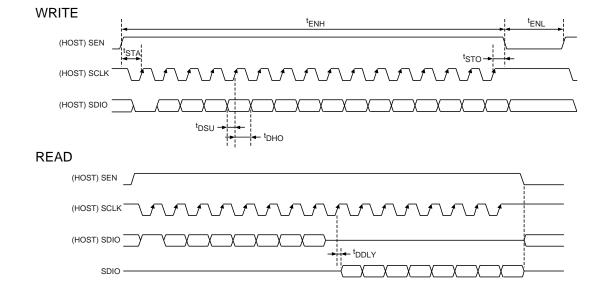

^{*1} TEST1 are either the time when power is applied or "00000000" is set. Do not attempt to change "00000000" during operation. "00000000" is returned when reading is made.

^{*2} No problem in terms of operation occurs even when writing is made to the address 02h to 0Dh & 0Fh, 12h to 1Dh & 1Fh and 72h to 7Dh & 7Fh. "00000000" is returned when this address is read.


^{*3} When I performed address reading except the register group set by an SSEL terminal, I keep Hi-Z without paying a value.

Serial protocol

WRITE timing chart



READ timing chart

SDIO pin load / C_L = 20pF. The table below shows the design reference value.

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency Write	fSCL	0		10	MHz
SCL clock frequency Read	fSCL	0		4	MHz
SDIO data setup time	t _{DSU}	50			ns
SDIO data hold time	t _{DHO}	50			ns
SDIO output delay	^t DDLY		10	80	ns
SEN "H" period	t _{ENH}	1.6			μs
SEN "L" period	t _{ENL}	200			ns
SCL rise time after SEN rise	^t STA	60			ns
SEN fall time after final SCL rise	^t STO	100			ns
Serial input "H" voltage	V _I H	2.4		VCC	V
Serial input "L" voltage	V _I L			0.6	V
SDIO output "H" voltage	V _О Н	2.5	2.9	3.3	V
SDIO output "L" voltage	V _O L	0	0.3	0.8	V

Pin	Туре	Equivalent circuit diagram
SDIO	Input Output	3V 3V \$125kΩ 100kΩ 100kΩ 100kΩ
VOP VON	Output	200
SCLK SEN	Input	3V 100kΩ W
SSEL	Input	$\begin{array}{c c} \hline & 800 \text{k}\Omega \\ \hline & 5 \text{k}\Omega \\ \hline & 200 \text{k}\Omega \\ \hline & 200 \text{k}\Omega \end{array}$

LV0229XA

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa