Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments CD74HC4094M For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # CD54HC4094, CD74HC4094, CD74HCT4094 Data sheet acquired from Harris Semiconductor SCHS211E ## **High-Speed CMOS Logic** November 1997 - Revised December 2010 8-Stage Shift and Store Bus Register, Three-State Features - ¥ Buffered Inputs - ¥ Separate Serial Outputs Synchronous to Both Positive and Negative Clock Edges For Cascading - ¥ Fanout (Over Temperature Range) - Standard Outputs......10 LSTTL Loads - Bus Driver Outputs15 LSTTL Loads - ¥ Wide Operating T emperature Rang e . . . -55°C to 125°C - ¥ Balanced Propagation Delay and Transition Times - ¥ Signi Cant Power Reduction Compared to LSTTL Logic ICs - ¥ HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - ¥ HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL} = 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, $I_I \le 1 \mu A$ at V_{OL} , V_{OH} #### Description The ÕHC4094and CD74HCT4094 are 8-stage serial shift registers having a storage latch associated with each stage for strobing data from the serial input to parallel buffered three-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the Strobe input is high. Data in the storage register appears at the outputs whenever the Output-Enable signal is high. Two serial outputs are available for cascading a number of these devices. Data is available at the QS₁ serial output terminal on positive clock edges to allow for high-speed operation in cascaded system in which the clock rise time is fast. The same serial information, available at the QS2 terminal on the next negative clock edge, provides a means for cascading these devices when the clock rise time is slow. #### Ordering Information | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |-----------------|---------------------|--------------| | CD54HC4094F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC4094E | -55 to 125 | 16 Ld PDIP | | CD74HC4094M | -55 to 125 | 16 Ld SOIC | | CD74HC4094MT | -55 to 125 | 16 Ld SOIC | | CD74HC4094M96G3 | -55 to 125 | 16 Ld SOIC | | CD74HC4094NSR | -55 to 125 | 16 Ld SOP | | CD74HC4094PW | -55 to 125 | 16 Ld TSSOP | | CD74HC4094PWR | -55 to 125 | 16 Ld TSSOP | | CD74HC4094PWT | -55 to 125 | 16 Ld TSSOP | | CD74HCT4094E | -55 to 125 | 16 Ld PDIP | | CD74HCT4094M | -55 to 125 | 16 Ld SOIC | | CD74HCT4094MT | -55 to 125 | 16 Ld SOIC | | CD74HCT4094M96 | -55 to 125 | 16 Ld SOIC | NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suf (x T denotes a small-quantity #### **Pinout** CD54HC4094 (CERDIP) CD74HC4094 (PDIP, SOIC, SOP, TSSOP) CD74HCT4094 (PDIP, SOIC) TOP VIEW STROBE 1 16 V_{CC} 15 OE DATA 2 CP 3 14 Q₄ Q₀ 4 13 Q₅ Q₁ 5 12 Q₆ Q_2 6 11 Q₇ Q_3 7 10 QS₂ GND 8 9 QS₁ CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright 2003, Texas Instruments Incorporated #### CD54HC4094, CD74HC4094, CD74HCT4094 ### Functional Diagram #### TRUTH TABLE | | INPL | JTS | | PARALLEL | . OUTPUTS | SERIAL OUTPUTS | | | |----------|------|-----|---|----------------|-------------------|--------------------------|-----------------|--| | СР | OE | STR | D | Q ₀ | Qn | QS ₁ (NOTE 1) | QS ₂ | | | 1 | L | Х | Х | Z | Z | QÕ6 | NC | | | \ | L | Х | Х | Z | Z | NC | Q ₇ | | | 1 | Н | L | Х | NC | NC | QÕ6 | NC | | | 1 | Н | Н | L | L | Q _n -1 | QÕ6 | NC | | | 1 | Н | Н | Н | Н | Q _n –1 | QÕ6 | NC | | | \ | Н | Н | Н | NC | NC | NC | Q ₇ | | H = High Voltage Level, L = Low Voltage Level, X = DonŌt Care, NC = No charge, Z = High Impedance Off-state, ↑ = Transition from Low to High Level, ↓ = Transition from High to Low. ^{1.} At the positive clock edge the information in the seventh register stage is transferred to the 8th register stage and QS1 output. ## CD54HC4094, CD74HC4094, CD74HCT4094 Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### CD54HC4094, CD74HC4094, CD74HCT4094 | Absolute Maximum Ratings | Thermal Information | |--|--| | DC Supply Voltage, V _{CC} 0.5V to 7V | Package Thermal Impedance, θ _{JA} (see Note 2): | | DC Input Diode Current, I _{IK} | E (PDIP) Package | | For $V_1 < -0.5V$ or $V_1 > V_{CC} + 0.5V +$ | M (SOIC) Package73°C/W | | DC Output Diode Current, I _{OK} | NS (SOP) Package | | For $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V \dots \pm 20$ mA | PW (TSSOP) Package108°C/W | | DC Output Source or Sink Current per Output Pin, lo | Maximum Junction Temperature (Plastic Package) 1500 | | For $V_0 > -0.5V$ or $V_0 < V_{CC} + 0.5V \dots \pm 25mA$ | Maximum Storage Temperature Range65°C to 150° | | DC V _{CC} or Ground Current, I _{CC} | Maximum Lead Temperature (Soldering 10s) | | Operating Conditions | | | Temperature Range (T _A) | | | Supply Voltage Range, V _{CC} | | | HC Types | | | HCT Types | | | DC Input or Output Voltage, V _I , V _O | | | Input Rise and Fall Time | | | 2V | | | 4.5V | | | 6V | | | CAUTION: Stresses above those listed in OAbsoluteMaximum RatingsÓmay ca | use permanent damage to the device. This is a stress only rating and operation | CAUTION: Stresses above those listed in OAbsoluteMaximum RatingsOmay cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this speci@cation is not implied. #### NOTE: 2. The package thermal impedance is calculated in accordance with JESD 51–7. ### DC Electrical Speci⊡cations | | | TES
CONDI | | V _{CC} | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | ↓ I | | | | | | | | | | | | | |-----------------------------|-----------------|------------------------------------|---------------------|-----------------|------|------|------|---------|--------|---------|---------|-------|---|---|------|---|---|---|-----|---|-----|---|-----|---| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (v) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | | | | | | | | | | | | HC TYPES | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | | | | | | | | | | | | Voltage | | | ĺ | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | | | | | | | | | | | ĺ | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | | | | | | | | | | | | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | | | | | | | | | | | | | Voltage | | | ĺ | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | | | | | | | | | | | | İ | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | | | | | | | | | | | | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | | | | | | | | | | | | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | | | | | | | | | | | | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | | | | | | | | | | | | | High Level Output | 7 | İ | - | - | - | - | - | - | - | - | - | V | | | | | | | | | | | | | | Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | | | | | | | | | | | | TTE Educas | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | | | | | | | | | | | | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | | | | | | | | | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | | | | | | | | | | OWICO LOUGS | | (| | | l İ | | l t | | | | | - | - | - | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output | 7 | · · | - | - | - | - | - | - | - | - | - | V | | | | | | | | | | | | | | Voltage
TTL Loads | | · · | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | | | | | | | | | I I L LOUGS | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | | | | | | | | | Input Leakage
Current | II | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | | | | | | | | | | | | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | | | | | | | | | | | | | ### CD54HC4094, CD74HC4094, CD74HCT4094 #### DC Electrical Specications (Continued) | | | TES
CONDI | | V _{CC} | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |--|------------------------------|------------------------------------|---------------------|-----------------|------|------|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | 8 | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HCT TYPES | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | ٧ | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IH} or V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | = | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or V _{IL} | 0.02 | 4.5 | - | - | 0.1 | ı | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | · | 4 | 4.5 | - | = | 0.26 | ı | 0.33 | = | 0.4 | V | | Input Leakage
Current | IĮ | V _{CC} and
GND | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | lcc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 3) | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | ı | 450 | - | 490 | μА | #### NOTE: #### **HCT Input Loading Table** | INPUT | UNIT LOADS | |--------|------------| | D | 0.4 | | CP, OE | 1.5 | | STR | 1.0 | NOTE: Unit Load is $\Delta I_{\hbox{\footnotesize CC}}$ limit speci $\hbox{$\ensuremath{\overline{\!\mathcal{U}}}$ed}$ in DC Electrical Table, e.g., $360\mu\text{A}$ max at $25^{\text{o}}\text{C}.$ #### Prerequisite for Switching Specications | | | | 25 | °C | -40°C T | O 85°C | -55°C T | | | |-----------------|-----------------|---------------------|-----|-----|---------|--------|---------|-----|-------| | CHARACTERISTIC | SYMBOL | V _{CC} (V) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | • | • | | • | • | | • | • | | | CP Pulse Width | t _W | 2 | 80 | - | 100 | - | 120 | - | ns | | | | 4.5 | 16 | - | 20 | - | 24 | - | ns | | | | 6 | 14 | - | 17 | - | 20 | - | ns | | STR Pulse Width | t _{WH} | 2 | 80 | - | 100 | - | 120 | - | ns | | | | 4.5 | 16 | - | 20 | - | 24 | - | ns | | | | 6 | 14 | - | 17 | - | 20 | - | ns | ^{3.} For dual–supply systems theoretical worst case (γ = 2.4V, V_{CC} = 5.5V) specification is 1.8mA. #### CD54HC4094, CD74HC4094, CD74HCT4094 | | | | 25 | °C | -40°C T | O 85°C | -55°C T | O 125°C | | |---------------------|-----------------------|---------------------|--------------|-----|---------|--------|---------|---------|-------| | CHARACTERISTIC | SYMBOL | V _{CC} (V) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | Data Set-up Time | t _{SU} | 2 | 50 | - | 65 | - | 75 | - | ns | | | | 4.5 | 10 | - | 13 | - | 15 | - | ns | | | | 6 | 9 | - | 11 | - | 13 | - | ns | | Data Hold Time | t _H | 2 | 3 | - | 3 | - | 3 | - | ns | | | | 4.5 | 3 | - | 3 | - | 3 | - | ns | | | | 6 | 3 | - | 3 | - | 3 | - | ns | | STR Set-up Time | t _{SU} | 2 | 100 | - | 125 | - | 150 | - | ns | | | | 4.5 | 20 | - | 25 | - | 30 | - | ns | | | | 6 | 17 | - | 21 | - | 26 | - | ns | | STR Hold Time | t _H | 2 | 0 | - | 0 | - | 0 | - | ns | | | | 4.5 | 0 | - | 0 | - | 0 | - | ns | | | | 6 | 0 | - | 0 | - | 0 | - | ns | | aximum CP Frequency | f _{CL (MAX)} | 2 | 6 | - | 5 | - | 4 | - | MHz | | | 1 | | | | | | | | | 30 35 16 16 10 4 20 0 30 24 28 20 20 13 4 25 0 24 _ 20 24 24 24 15 4 30 0 20 _ MHz MHz ns ns ns ns ns MHz 4.5 6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 t_{W} t_{WH} t_{SU} t_{H} t_{SU} f_{CL (MAX)} ## Switching Speci©cations Input t_r, t_f = 6ns HCT TYPES CP Pulse Width STR Pulse Width Data Set-up Time STR Set-up Time Maximum CP Frequency Data Hold Time STR Hold Time | | | TEST | Vcc | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |--------------------------------------|---------------------------------------|-----------------------|-----|-----|------|-----|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | | | | | Propagation Delay Time
(Figure 1) | t _{PLH,}
t _{PHL} | C _L = 50pF | 2 | - | - | 150 | - | 190 | - | 225 | ns | | CP to QS ₁ | |] | 4.5 | - | - | 30 | - | 38 | - | 45 | ns | | | | C _L =15pF | 5 | - | 12 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 26 | - | 33 | - | 38 | ns | | CP to QS ₂ | t _{PLH} , | C _L = 50pF | 2 | - | - | 135 | - | 170 | - | 205 | ns | | | t _{PHL} | 1 | 4.5 | - | - | 27 | - | 34 | - | 41 | ns | | | | C _L =15pF | 5 | - | 11 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 23 | - | 29 | - | 35 | ns | | CP to Q _n | t _{PLH} , | C _L = 50pF | 2 | - | - | 195 | - | 245 | - | 295 | ns | | | t _{PHL} |] | 4.5 | - | - | 39 | - | 49 | - | 59 | ns | | | |] | 5 | - | 16 | - | - | - | - | - | ns | | | |] | 6 | - | - | 33 | - | 42 | - | 50 | ns | | STR to Q _n | t _{PLH} , | C _L = 50pF | 2 | - | - | 180 | - | 225 | - | 270 | ns | | . | t _{PHL} |] | 4.5 | - | - | 36 | - | 45 | - | 54 | ns | | | |] | 6 | - | - | 31 | - | 38 | - | 46 | ns | Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## CD54HC4094, CD74HC4094, CD74HCT4094 ### Switching Speci \cite{l} cations Input t_r , t_f = 6ns (Continued) | | | TEST | v _{cc} | | 25°C | | -40°C T | O 85°C | -55°C TO 125°C | | | |--|---------------------------------------|-----------------------|-----------------|-----|------|-----|---------|--------|----------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Output Enable to Q _n | t _{PZH} , t _{PZL} | C _L = 50pF | 2 | - | - | 175 | - | 220 | - | 265 | ns | | | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | | 6 | - | - | 30 | - | 37 | - | 45 | ns | | Output Disable to Q _n | t _{PHZ} , t _{PLZ} | C _L = 50pF | 2 | - | - | 125 | - | 155 | - | 190 | ns | | | | | 4.5 | - | - | 25 | - | 31 | - | 38 | ns | | | | | 6 | - | - | 21 | - | 26 | - | 32 | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Output Disabling Time | t _{PHZ} , t _{PLZ} | C _L =15pF | 5 | - | 10 | - | - | - | - | - | ns | | Maximum CP Frequency | f _{MAX} | C _L =15pF | 5 | - | 60 | - | - | - | - | - | MHz | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 4, 5) | C _{PD} | C _L =15pF | 5 | - | 90 | - | - | - | - | - | pF | | Three-State Output
Capacitance | CO | C _L = 50pF | - | - | - | 15 | - | 15 | - | 15 | pF | | HCT TYPES | | | | | | | | | | | | | Propagation Delay Time (Figure 1) | t _{PLH,}
t _{PHL} | C _L = 50pF | 4.5 | - | - | 39 | - | - | - | - | ns | | CP to QS ₁ | | C _L =15pF | 5 | - | 16 | - | - | - | - | - | ns | | CP to QS ₂ | t _{PLH} , | C _L = 50pF | 4.5 | - | - | 36 | - | - | - | - | ns | | | t _{PHL} | C _L =15pF | 5 | - | 15 | - | - | - | - | - | ns | | CP to Q _n | t _{PLH} , | C _L = 50pF | 4.5 | - | - | 43 | - | - | - | - | ns | | | t _{PHL} | C _L =15pF | 5 | - | 18 | - | - | - | - | - | ns | | STR to Q _n | t _{PLH,}
t _{PHL} | C _L = 50pF | 4.5 | - | - | 39 | - | - | - | - | ns | | Output Enable to Q _n | t _{PZH} , t _{PZL} | C _L = 50pF | 4.5 | - | - | 35 | - | - | - | - | ns | | Output Disable to Q _n | t _{PHZ} , t _{PLZ} | C _L = 50pF | 4.5 | - | - | 35 | - | - | - | - | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 4.5 | - | - | 15 | - | - | - | - | ns | | Output Disabling Time | t _{PHZ} , t _{PLZ} | C _L =15pF | 5 | - | 14 | - | - | - | - | - | ns | | Maximum CP Frequency | f _{MAX} | C _L =15pF | 5 | - | 60 | - | - | - | - | - | MHz | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 4, 5) | C _{PD} | C _L =15pF | 5 | - | 110 | - | - | - | - | - | pF | | Three-State Output
Capacitance | CO | C _L = 50pF | - | - | - | 15 | - | 15 | - | 15 | pF | ^{4.} $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per register. ^{5.} $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage. #### CD54/74HC4094, CD74HCT4094 #### Test Circuits and Waveforms FIGURE 1. DATA PROPAGATION DELAYS, SET-UP AND HOLD TIMES FIGURE 2. STROBE PROPAGATION DELAYS AND SET-UP AND HOLD TIMES FIGURE 3. ENABLE AND DISABLE TIMES Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## PACKAGE OPTION ADDENDUM www.ti.com 8-Nov-2014 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|-------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CD54HC4094F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54HC4094F3A | Samples | | CD74HC4094E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HC4094E | Samples | | CD74HC4094M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094M96G3 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094M96G4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094MG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094NSR | ACTIVE | so | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094NSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC4094M | Samples | | CD74HC4094PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HC4094PWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HC4094PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HC4094PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HC4094PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HC4094PWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ4094 | Samples | | CD74HCT4094E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HCT4094E | Samples | Addendum-Page 1 ## **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 8-Nov-2014 | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|----------|--------------|---------|------|---------|----------------------------|-------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CD74HCT4094EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HCT4094E | Samples | | CD74HCT4094M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT4094M | Samples | | CD74HCT4094M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -55 to 125 | HCT4094M | Samples | | CD74HCT4094M96E4 | OBSOLETE | SOIC | D | 16 | | TBD | Call TI | Call TI | -55 to 125 | | | | CD74HCT4094M96G4 | OBSOLETE | SOIC | D | 16 | | TBD | Call TI | Call TI | -55 to 125 | | | | CD74HCT4094ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT4094M | Samples | | CD74HCT4094MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT4094M | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that Pb-Free (RoHS): ITs terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 2 # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 8-Nov-2014 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54HC4094, CD74HC4094: - Catalog: CD74HC4094 - Military: CD54HC4094 NOTE: Qualified Version Definitions: - Catalog Tl's standard catalog product - Military QML certified for Military and Defense Applications Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## PACKAGE MATERIALS INFORMATION www.ti.com 14-Mar-2016 #### TAPE AND REEL INFORMATION - A0 Dimension designed to accommodate the component width - B0 Dimension designed to accommodate the component length - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74HC4094M96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74HC4094M96 | SOIC | D | 16 | 2500 | 330.0 | 16.8 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74HC4094M96G3 | SOIC | D | 16 | 2500 | 330.0 | 16.8 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74HC4094M96G4 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74HC4094NSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD74HC4094PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HC4094PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HC4094PWRG4 | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HC4094PWT | TSSOP | PW | 16 | 250 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HCT4094M96 | SOIC | D | 16 | 2500 | 330.0 | 16.8 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74HCT4094M96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Mar-2016 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74HC4094M96 | SOIC | D | 16 | 2500 | 333.2 | 345.9 | 28.6 | | CD74HC4094M96 | SOIC | D | 16 | 2500 | 364.0 | 364.0 | 27.0 | | CD74HC4094M96G3 | SOIC | D | 16 | 2500 | 364.0 | 364.0 | 27.0 | | CD74HC4094M96G4 | SOIC | D | 16 | 2500 | 333.2 | 345.9 | 28.6 | | CD74HC4094NSR | SO | NS | 16 | 2000 | 367.0 | 367.0 | 38.0 | | CD74HC4094PWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | CD74HC4094PWR | TSSOP | PW | 16 | 2000 | 364.0 | 364.0 | 27.0 | | CD74HC4094PWRG4 | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | CD74HC4094PWT | TSSOP | PW | 16 | 250 | 367.0 | 367.0 | 35.0 | | CD74HCT4094M96 | SOIC | D | 16 | 2500 | 364.0 | 364.0 | 27.0 | | CD74HCT4094M96 | SOIC | D | 16 | 2500 | 333.2 | 345.9 | 28.6 | Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # J (R-GDIP-T**) # CERAMIC DUAL IN-LINE PACKAGE 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ## **MECHANICAL DATA** # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE | PINS ** | 14 | 16 | 18 | 20 | |---------------------|------------------|------------------|------------------|------------------| | A MAX | 0.775
(19,69) | 0.775
(19,69) | 0.920
(23,37) | 1.060
(26,92) | | A MIN | 0.745
(18,92) | 0.745
(18,92) | 0.850
(21,59) | 0.940
(23,88) | | MS-001
VARIATION | АА | ВВ | AC | AD | - . All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## **MECHANICAL DATA** # D (R-PDSO-G16) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. ### LAND PATTERN DATA # D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # **MECHANICAL DATA** PW (R-PDSO-G16) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ### **LAND PATTERN DATA** # PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC ### **MECHANICAL DATA** ## NS (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE PACKAGE - All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. Datasheet of CD74HC4094M - IC BUS REG TRI-ST 8STG 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### **Applications** **Products** Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Security www.ti.com/security Logic Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com www.ti.com/wirelessconnectivity Wireless Connectivity > Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated