Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Rohm Semiconductor MCH155A0R5CK For any questions, you can email us directly: sales@integrated-circuit.com Ceramic capacitors ## Multi-layer ceramic chip capacitors ## MCH15 (1005 (0402) size, chip capacitor) #### Features - 1) Small size (1.0 x 0.5 x 0.5 mm) makes it perfect for lightweight portable devices. - Comes packed either in tape to enable automatic mounting or in bulk cases. - Precise uniformity of shape and dimensions facilitates highly efficient automatic mounting. - 4) Barrier layer and end terminations to improve solderability. # 1.0±0.05 90.0±0.05 0.1Min. 0.3Min. 0.5±0.05 ●External dimensions (Units : mm) #### Structure #### Product designation Part No. | Code | Product thickness | Packaging specifications | Reel | Basic ordening unit (pcs.) | |------|-------------------|-------------------------------------|----------------|----------------------------| | K | 0.5mm | Paper tape (width 8 mm, pitch 2 mm) | φ180mm (7in.) | 10,000 | | L | 0.5mm | Paper tape (width 8 mm, pitch 2 mm) | ф330mm (13in.) | 50,000 | | С | 0.5mm | Bulk case | _ | 50,000 | Reel (§180, §330mm): compatible with EIAJ ET-7200A Bulk case: compatible with EIAJ ET-7201A Packaging style MCH 1 5 5 FN 1 0 3 Z K | | | | | _ 5 | | 三 | | | |-------|---|------|---------|----------------------------|-------------------------------------|-----------------------|------|----------------------| | Rated | Rated voltage Capacitance-temperature characteristics | | | | Nominal | Capacitance tolerance | | | | Code | Voltage | Code | Code | Operating temperature (°C) | Temp. coefficient or percent change | capacitance | Code | tolerance | | 2 | 25V | Α | CG(C0G) | -55~+125 | 0±30ppm/°C | | U | ± 0.25pF (0.5 ~ 5pF) | | 3 | 16V | CN | R | -55~+125 | ±15% | | | ± 0.5pF (5.1 ~ 10pF) | | 5 | 50V | | В | -25~+85 | ±10% | 3-digit designation | J | ± 5% (11pF or more) | | | | | (X7R) | (-55~+125) | (±15%) | according to IEC | ۱, | 1.400/ | | | | FN | F | -25~+85 | +30%,-80% | | K | ± 10% | | | | | (Y5V) | (-30~+85) | (+22%,-82%) | | Z | + 80%, -20% | ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### ●Capacitance range For thermal compensation | Part number MCH15 | | | | | | | |-------------------|-----------------------------|------------|--|--|--|--| | Capacitance (pF) | Temperature characteristics | (CG) (C0G) | | | | | | Сарасканос (рг) | Rated voltage (V) Tolerance | 50V | | | | | | 0.5
0.75
1 | | | | | | | | 1.1
1.2
1.3 | | | | | | | | 1.5
1.6
1.8 | | | | | | | | 2
2.2
2.4 | C (± 0.25pF) | | | | | | | 2.7
3
3.3 | | | | | | | | 3.6
3.9
4 | | | | | | | | 4.3
4.7
5 | | | | | | | | 5.1
5.6
6 | | | | | | | | 6.2
6.8
7 | D (± 0.5pF) | | | | | | | 7.5
8
8.2 | | | | | | | | 9
9.1
10 | | | | | | | | 11
12
13 | | | | | | | | 15
16
18 | J (± 5%) | | | | | | | 20
22
24 | | | | | | | | 27
30
33 | | | | | | | | 36
39
43 | | | | | | | | Part number MCH15 | | | | | | |-------------------|-----------------------------------|-----------------|--|--|--| | Capacitance (pF) | Temperature characteristics | A
(CG) (C0G) | | | | | Сарасцапсе (рг) | Rated voltage
(V)
Tolerance | 50V | | | | | 47 | | | | | | | 51
56 | | | | | | | | | \perp | | | | | 62
68 | | | | | | | 75 | | | | | | | 82 | | | | | | | 91 | | | | | | | 100 | | | | | | | 110 | | | | | | | 120 | | | | | | | 130 | J (± 5%) | | | | | | 150 | (=0/0) | | | | | | 160
180 | | | | | | | 200 | | | | | | | 200 | | | | | | | 240 | | | | | | | 270 | | | | | | | 300 | | | | | | | 330 | | | | | | | 360 | | | | | | | 390 | | | | | | | 430 | | | | | | | 470
510 | | | | | | | 510 | | | | | | Product thickness (mm) 0.5 ± 0.05 ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. ## Distributor of Rohm Semiconductor: Excellent Integrated System Limited Datasheet of MCH155A0R5CK - CAP CER 0.50PF 50V NP0 0402 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com MCH15 #### Ceramic capacitors High dielectric constant | Part nu | MCH15 | | | | | | |-------------------------------------|-----------------------------|------------------|------|--------------|-----------|-----| | Occasion (F | Temperature characteristics | CN (R) (B) (X7R) | | FN (F) (Y5V) | | | | Capacitance (pF) | Rated voltage (V) | 50V | 16V | 50V | 25V | 16V | | | Tolerance | K (± | 10%) | Z | (+80, -20 | %) | | 220
270
330 | | | | | | | | 390
470
560 | | | | | | | | 680
820
1,000 | | | | | | | | 1,200
1,500
1,800 | | | | | | | | 2,200
2,700
3,300 | | | | | | | | 3,900
4,700
5,600 | | | | | | | | 6,800
8,200
10,000 (0.01μF) | | | | | | | | 12,000
15,000
18,000 | | | | | | | | 22,000
27,000
33,000 | | | | | | | | 39,000
47,000
56,000 | | | | | | | | 68,000
82,000
100,000 (0.1μF) | | | | | | | | 120,000
150,000
180,000 | | | | | | | | 220,000
270,000
330,000 | | | | | | | | 390,000
470,000
560,000 | | | | | | | Product thickness (mm) 0.5 ± 0.05 ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. ## Distributor of Rohm Semiconductor: Excellent Integrated System Limited Datasheet of MCH155A0R5CK - CAP CER 0.50PF 50V NP0 0402 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### MCH15 #### Ceramic capacitors #### Characteristics Class 1 (For thermal compensation) | | Temperature characteristics | | Test methods/conditions | | | |----------------------------|-----------------------------|---|---|--|--| | Item | | A (CG) (C0G) | (based on JIS C 5102) | | | | Operating temperature | | −55°C ~ 125°C | | | | | Nominal capacitance (C) | | Must be within the specified tolerance range. | Based on paragraph 7.8 and paragraph 9 Measured at room temperature and standard humidity, | | | | Dissipation factor (tanő) | | 100/(400+20C)% or less: Less than 30 pF
0.1% or less : 30 pF or larger | 1000pF or less Measurement frequency: 1 ± 0.1MHz Measurement voltage : 1 ± 0.1Vrms. Over 1000pF Measurement frequency: 1 ± 0.1kHz Measurement voltage : 1 ± 0.1Vrms. | | | | Insulation resistance (IR) | | 10,000M Ω or 500M Ω · μ F, whichever is smaller | Based on paragraph 7.6
Measurement is made after rated voltage is applied for 60 ± 5 | | | | Withstanding vo | oltage | The insulation must not be damaged. | Based on paragraph 7.1 Apply 300% of the rated voltage for 1 to 5s then measure. | | | | Temperature ch | naracteristics | Within 0 ± 30ppm/°C | The temperature coefficients in table 12, paragraph 7.12 are calculated at 20°C and high temperature. | | | | Terminal adherence | | No detachment or signs of detachment. | Based on paragraph 8.11. 2. Apply 5N for 10 ± 1s in the direction indicated by the arrow. Pressure (5) Capacitor | | | | | Appearance | There must be no mechanical damage. | Chip is mounted to a board in the manner | | | | Resistance
to vibration | Rate of capacitance change | Must be within initial tolerance. | shown on the right, subjected to vibration (type A in paragraph 8.2), and measured | | | | | Dissipation factor (tanδ) | Must satisfy initial specified value. | 24 ± 2 hrs. later. | | | | Solderability | | At least 3/4 of the surface of the two terminals must be covered with new solder. | Based on paragraph 8.13 Soldering temperature: 235 ± 5 °C Soldering time : 2 ± 0.5 s | | | | | Appearance | There must be no mechanical damage. | | | | | | Rate of capacitance change | \pm 2.5% or \pm 0.25 pF, whichever is larger. | Based on paragraph 8.14. | | | | Resistance
to soldering | Dissipation factor (tanδ) | Must satisfy initial specified value. | Soldering temperature: 260 ± 5°C | | | | heat | Insulation resistance | 10,000MΩ or 500MΩ \cdot μF, whichever is smaller | Soldering time : 5 ± 0.5 s Preheating : $150 \pm 10^{\circ}$ C for 1 to 2 min. | | | | | Withstanding voltage | The insulation must not be damaged. | | | | | | Appearance | There must be no mechanical damage. | | | | | | Rate of capacitance change | \pm 2.5% or \pm 0.25 pF, whichever is larger. | Based on paragraph 9.3 | | | | Temperature cycling | Dissipation factor (tanδ) | Must satisfy initial specified value. | Number of cycles : 5 | | | | | Insulation resistance | 10,000MΩ or 500MΩ \cdot μF, whichever is smaller | Capacitance measured after 24 ± 2 hrs. | | | | | Appearance | There must be no mechanical damage. | Based on paragraph 9.9 | | | | | Rate of capacitance change | \pm 7.5% or \pm 0.75 pF, whichever is larger. | Test temperature: 40 ± 2°C | | | | Humidity load test | Dissipation factor (tanδ) | 0.5% or less | Relative humidity: 90% to 95% Applied voltage : rated voltage | | | | | Insulation resistance | 500MΩ or 25MΩ · μF, whichever is smaller | Test time : 500 to 524 hrs. Capacitance measured after 24 ± 2 hrs. | | | | | Appearance | There must be no mechanical damage. | Record on paragraph 0.10 | | | | High- | Rate of capacitance change | \pm 3.0% or \pm 0.3 pF, whichever is larger. | Based on paragraph 9.10 Test temperature: Max. operating temp. | | | | temperature
load test | Dissipation factor (tanδ) | 0.3% or less | Applied voltage : rated voltage × 200% Test time : 1,000 to 1,048 hrs. | | | | ioau test | Insulation resistance | 1,000M Ω or 50M Ω · μF, | Capacitance measured after 24 ± 2 hrs. | | | ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. ## Distributor of Rohm Semiconductor: Excellent Integrated System Limited Datasheet of MCH155A0R5CK - CAP CER 0.50PF 50V NP0 0402 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### MCH15 #### Ceramic capacitors Class 2 (High dielectric constant) | Siass 2 (Flight die | , , | | | | | |-----------------------------------|------------------------------------|--|--|---|--| | Temperature characteristics | | CN (R) (B) (X7R) | FN (F) (Y5V) | Test methods/conditions (based on JIS C 5102) | | | Operating temperature | | −55°C ~ +125°C | −30°C ~ +85°C | | | | Nominal capacitance (C) | | Must be within the specified tolerance range. | | Based on paragraph 7.8 Measured at room temperature and standard humidity | | | Dissipation factor (tanδ) | | 2.5% or less
(when rated voltage is 16V: 3.5% or less) | 5.0% or less
(when rated voltage is 16V: 7.5% or less) | Measurement frequency: 1 ± 0.1 kHz Measurement voltage : 1.0 ± 0.2 Vrms. | | | Insulation resistance (IR) | | 10,000MΩ or 500MΩ · μ | μF, whichever is smaller | Based on paragraph 7.6 Measurement is made after rated voltage is applied for 60 \pm 5s. | | | Withstanding voltage | | The insulation mus | st not be damaged. | Based on paragraph 7.1
Apply 250% of the rated voltage for 1 to 5s then measure | | | Temperature characteristics | | Within ± 15% | + 22, + 82% | The temperature coefficients in paragraph 7.12, table 8, condition B, are based on measurements carried out at 20°C, with no voltage applied. | | | Terminal adherence | | No detachment or signs of detachment | | Based on paragraph 8. 11. 2.
Apply 5N for $10 \pm 1s$ in the direction indicated by the arrow. | | | | Appearance | There must be no n | Chip is mounted to a board in the | | | | Resistance
to vibration | Rate of capacitance change | Must be within | manner shown on the right, subjected to vibration (type A in paragraph 8.2), | | | | | Dissipation factor (tanδ) | Must satisfy initia | and measured 48 ± 4 hrs. later. Board | | | | Solderability | | At least 3/4 of the surface of the two terr | ninals must be covered with new solder. | Based on paragraph 8. 13 | | | | Appearance | There must be no mechanical damage. | | Based on paragraph 8. 14. | | | | Rate of capacitance change | Within ± 5.0% Within ± 20.0% | | | | | Resistance
to soldering | Dissipation factor (tanδ) | Must satisfy initial specified value. | | Soldering temperature : 260 ± 5°C | | | heat | Insulation resistance | 10,000Μ Ω or 500Μ $\Omega \cdot \mu F$, whichever is smaller | | Soldering time $: 5 \pm 0.5s$
Preheating $: 150 \pm 10^{\circ}\text{C}$ for 1 to 2 min. | | | | Withstanding voltage | The insulation mus | | | | | | Appearance | There must be no n | | | | | Temperature | Rate of capacitance change | Within ± 7.5% | Within ± 20.0% | Based on paragraph 9.3 | | | cycling | Dissipation factor (tanδ) | Must satisfy initia | Il specified value. | Number of cycles : 5 Capacitance measured after 48 \pm 4 hrs | | | | Insulation resistance | 10,000MΩ or 500MΩ · μ | μF, whichever is smaller | | | | | Appearance | There must be no n | Based on paragraph 9.9 | | | | | Rate of capacitance change | ± 12.5% or less | Within ± 30.0% | Test temperature: 40 ± 2°C | | | Humidity load test | Dissipation factor (tanδ) | 5.0% or less | 7.5% or less
(when rated voltage is 16V: 10.0%) | Relative humidity: 90% to 95% Applied voltage : rated voltage Test time : 500 to 524 hrs. | | | | Insulation resistance | 500M Ω or 25M Ω · μ F, whichever is smaller | | Capacitance measured after 48 \pm 4 hrs | | | High-
temperature
load test | Appearance | There must be no mechanical damage. | | | | | | Rate of capacitance change | Within ± 10.0% | Within ± 30.0% | Based on paragraph 9.10 | | | | Dissipation factor ($tan\delta$) | 5.0% or less | 7.5% or less
(when rated voltage is 16V: 10.0%) | Test temperature: Max. operating temp Applied voltage : rated voltage × 2009 Test time : 1,000 to 1,048 hrs. | | | | Insulation resistance | 1,000M Ω or 50M Ω · μ F, whichever is smaller | | Capacitance measured after 48 ± 4 | | ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### Packaging specifications ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### Electrical characteristics #### ■A (C0G) Characteristics Fig.1 Capacitance-temperature characteristics Fig.2 Impedance-frequency characteristics #### ■CN (X7R) Characteristics Fig.3 Capacitance-temperature characteristics Fig.4 Impedance-frequency characteristics #### ■FN (Y5V) Characteristics Fig.5 Capacitance-temperature characteristics Fig.6 Impedance-frequency characteristics ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### ■ Temperature cycling test Fig.8 $tan\delta$ Fig.9 Insulation resistance Fig.10 Rate of capacitance change Fig.11 tanδ Fig.12 Insulation resistance Fig.13 Rate of capacitance change Fig.14 $tan\delta$ Fig.15 Insulation resistance ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### ■ High-temperature load test Fig.17 tanδ Fig.18 Insulation resistance Fig.19 Rate of capacitance change Fig.20 tanδ Fig.21 Insulation resistance Fig.22 Rate of capacitance change Fig.23 tanδ Fig.24 Insulation resistance ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification. #### Ceramic capacitors #### ■ Humidity load test Fig.25 Rate of capacitance change Fig.26 tanδ Fig.27 Insulation resistance Fig.28 Rate of capacitance change Fig.29 tanδ Fig.30 Insulation resistance Fig.31 Rate of capacitance change Fig.32 $tan\delta$ Fig.33 Insulation resistance ^{*}The design and specifications are subject to change without prior notice. Before ordering or using, please check the latest technical specification.