Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Standex-Meder Electronics DIP05-1A72-11D

For any questions, you can email us directly: sales@integrated-circuit.com

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

Series Datasheet - DIP Reed Relays

Part Description:

www.standexmeder.com

DIP Series Reed Relays

- Features: Dual In-Line IC Compatible Relay, Available with Dielectric Strength 4.25VDC
- > Applications: General Purpose, Measuring and Testing Devices & Others

DIP

Markets: Telecommunications, Test and Measurement, Security & Others

00-0X00-00X

Customer Options		11			
Contact Data	72	75	90	Unit	
Rated Power (max.) Any DC combination of V&A not to exceed their individual max.'s	10	10	10	W	
Switching Voltage (max.) DC or peak AC	200	500	175	V	
Switching Current (max.) DC or peak AC	0.5	0.5	0.5	А	
Carry Current (max.) DC or peak AC	1.0	1.0	1.2	А	
Contact Resistance (max.) @ 0.5V & 50mA	100	200	150	mOhm	
Breakdown Voltage (min.) According to EN60255-5	0.25	0.6	0.2	kVDC	
Operating Time (max.) Incl. Bounce; Measured with w/ Nominal Voltage	0.5	0.5	0.7	ms	
Release Time (max.) Measured with no Coil Excitation	0.1	0.1	1.5	ms	
Insulation Resistance (typ.) Rh<45%, 100V Test Voltage	10 ¹⁰	10 ¹⁰	109	GOhm	
Capacitance (typ.) @ 10kHz across open Switch	0.3	0.4	1.0	pF	

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

Series Datasheet – DIP Reed Relays

www.standexmeder.com

Coil Data		0.114.15	0.110	5 11 1 11	5 6 114 11	N : 10 115		
Contact Form	Switch Model	Coil Voltage (nom.)	Coil Resistance (typ.)	Pull-In Voltage (max.)	Drop-Out Voltage (min.)	Nominal Coil Power (typ.)		
Unit		VDC	Ohm	VDC	VDC	mW		
		05	500 (200)	3.5	0.75	50		
1A, 1B*	72, 75**	12	1,000	8.4	1.8	145		
IA, Ib	72, 75	15	2,000	10.5	2.2	115		
		24	2,000	16.8 3.6		290		
		05	200	3.5	0.75	125		
16	C 90	12	500	8.4	1.8	290		
1C	90	15	2,000	10.5	2.2	115		
		24	2,000	16.8	3.6	290		
		05	200	3.5	0.75	125		
2.4	72	12	500	8.4	1.8	290		
2A		15	2,000	10.5	2.2	115		
		24	2,000	16.8	3.6	290		

The Pull-In / Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per °C. *Re-closure of Form B may occur if the max. coil voltage is exceeded. Coil polarity on Form B must be observed. Pin 2 is positive. () For Switch 1A75 **1B-75 only with Coil Voltage 24 available.

Environmental Data	Unit		
Shock Resistance (max.) 1/2 sine wave duration 11ms	50	g	
Vibration Resistance (max.)	20	g	
Operating Temperature	-20 to 70	°C	
Storage Temperature	-35 to 95	°C	
Soldering Temperature (max.) 5 sec. max.	260	°C	

Handling & Assembly Instructions

- Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay.

 Protective circuits need to be used.
- External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
- Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
- Wave soldering: maximum 260°/5 seconds.
- Reflow soldering: Recommendations given by the soldering paste manufacturer need to be considered as well as the temperature limits of other components/processes.

Chandon

LICA.

. 1 0001

CC/702 C220

Vors O

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

Series Datasheet - DIP Reed Relays

www.standexmeder.com

Glossary Contact Form						
Form A	NO = Normally Open Contacts SPST = Single Pole Single Throw					
Form B	NC = Normally Closed Contacts SPST = Single Pole Single Throw					
Form C	Changeover SPDT = Single Pole Double Throw					

Contact	Package	Pin	Options										
Form	Size	Out	L	Α	В	С	D	Е	F	M	Q	R	S
1A	Low Profile	10	Χ	Χ	Χ	Χ							
		11	Χ					Χ					
		12	Χ	Χ									
		13	Χ										
	High Profile	10				Χ							
		11					Χ		Χ	Х	Х		Χ
		12					Χ	Χ	Χ				
		13					Χ			Х	Χ		
1B	High Profile	19	Χ				Χ			Χ	Χ		
2A	High Profile	21	Χ	Χ			Χ	Χ	Χ	Х	Χ	Χ	Х
1C	Low Profile	51	Χ										
	High Profile						Χ	Χ	Χ	Χ	Χ	Χ	Χ

