

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor MC100E452FN

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>



**Distributor of ON Semiconductor: Excellent Integrated System Limited** Datasheet of MC100E452FN - IC REGISTER 5BIT DIFF ECL 28PLCC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

# MC10E452, MC100E452

# 5 V ECL 5-Bit Differential Register

#### Description

The MC10E/100E452 is a 5-bit differential register with differential data (inputs and outputs) and clock. The registers are triggered by a positive transition of the positive clock (CLK) input. A high on the Master Reset (MR) asynchronously resets all registers so that the Q outputs go LOW.

The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the device. The clamping action will assert the  $\overline{D}$  and the  $\overline{CLK}$  sides of the inputs. Because of the edge triggered flip-flop nature of the device simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state. Note that the input clamps only operate when both inputs fall to 2.5 V below V<sub>CC</sub>.

The fully differential design of the device makes it ideal for very high frequency applications where a registered data path is necessary.

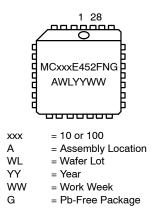
The  $V_{BB}$  pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to  $V_{BB}$  as a switching reference voltage.  $V_{BB}$  may also rebias AC coupled inputs. When used, decouple  $V_{BB}$  and  $V_{CC}$  via a 0.01  $\mu F$  capacitor and limit current sourcing or sinking to 0.5 mA. When not used,  $V_{BB}$  should be left open.

The 100 Series contains temperature compensation.

#### Features

- Differential D, CLK and Q; V<sub>BB</sub> Reference Available
- 1100 MHz Min. Toggle Frequency
- Asynchronous Master Reset
- PECL Mode Operating Range:
  - $V_{CC} = 4.2 \text{ V}$  to 5.7 V with  $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
  - $V_{CC} = 0$  V with  $V_{EE} = -4.2$  V to -5.7 V
- Internal Input 50 kΩ Pulldown Resistors, Output Q<sub>3</sub> will Default to Low State When Inputs Are Left Open
- ESD Protection:
  - Human Body Model; > 2 kV
  - Machine Model; > 200 V
  - Charged Device Model; > 2 kV
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level: 3 (Pb-Free)
- For Additional Information, see Application Note <u>AND8003/D</u>
- Flammability Rating:
  - ◆ UL 94 V-0 @ 0.125 in,Oxygen Index: 28 to 34
- Transistor Count = 315 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant




## **ON Semiconductor**<sup>®</sup>

#### www.onsemi.com



PLCC-28 FN SUFFIX CASE 776-02

#### **MARKING DIAGRAM\***



\*For additional marking information, refer to Application Note <u>AND8002/D</u>.

#### **ORDERING INFORMATION**

| Device        | Package              | Shipping <sup>†</sup> |
|---------------|----------------------|-----------------------|
| MC10E452FNR2G | PLCC-28<br>(Pb-Free) | 500/Tape & Reel       |
| MC100E452FNG  | PLCC-28<br>(Pb-Free) | 37 Units/Tube         |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

#### Semiconductor Components Industries, LLC, 2016 July, 2016 – Rev. 12



**Distributor of ON Semiconductor: Excellent Integrated System Limited** Datasheet of MC100E452FN - IC REGISTER 5BIT DIFF ECL 28PLCC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

# MC10E452, MC100E452

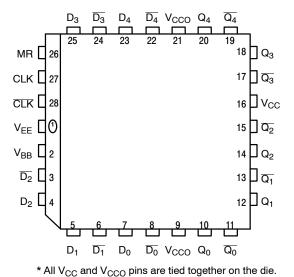
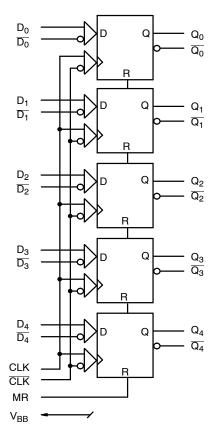




Table 1. PIN DESCRIPTION

| PIN                                | FUNCTION                      |
|------------------------------------|-------------------------------|
| D[0:4], D[0:4]                     | ECL Differential Data Inputs  |
| MR                                 | ECL Master Reset Input        |
| CLK, CLK                           | ECL Differential Clock Input  |
| Q[0:4], Q[0:4]                     | ECL Differential Data Outputs |
| V <sub>BB</sub>                    | Reference Voltage Output      |
| V <sub>CC</sub> , V <sub>CCO</sub> | Positive Supply               |
| V <sub>EE</sub>                    | Negative Supply               |

Warning: All  $V_{CC}$ ,  $V_{CCO}$ , and  $V_{EE}$  pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout: PLCC-28 (Top View)



## Figure 2. Logic Diagram



## Table 2. MAXIMUM RATINGS

| Symbol           | Parameter                                          | Condition 1                                    | Condition 2                                                           | Rating       | Unit |
|------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|--------------|------|
| V <sub>CC</sub>  | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                       | 8            | V    |
| $V_{EE}$         | NECL Mode Power Supply                             | V <sub>CC</sub> = 0 V                          |                                                                       | -8           | V    |
| VI               | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$ | 6<br>6       | V    |
| l <sub>out</sub> | Output Current                                     | Continuous<br>Surge                            |                                                                       | 50<br>100    | mA   |
| I <sub>BB</sub>  | V <sub>BB</sub> Sink/Source                        |                                                |                                                                       | ± 0.5        | mA   |
| T <sub>A</sub>   | Operating Temperature Range                        |                                                |                                                                       | 0 to +85     | °C   |
| T <sub>stg</sub> | Storage Temperature Range                          |                                                |                                                                       | -65 to +150  | °C   |
| $\theta_{JA}$    | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | PLCC-28                                                               | 63.5<br>43.5 | °C/W |
| $\theta_{JC}$    | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | PLCC-28                                                               | 22 to 26     | °C/W |
| T <sub>sol</sub> | Wave Solder (Pb-Free)                              |                                                |                                                                       | 265          | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

|                    |                                                                                    |      | -40°C |     |      | 0°C  |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|------------------------------------------------------------------------------------|------|-------|-----|------|------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                                     | Min  | Тур   | Max | Min  | Тур  | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                               |      | 74    | 89  |      | 74   | 89   |      | 74   | 89   |      | 74   | 89   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage<br>(Note 2)                                                    |      |       |     | 3980 | 4070 | 4160 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage<br>(Note 2)                                                     |      |       |     | 3050 | 3210 | 3370 | 3050 | 3210 | 3370 | 3050 | 3227 | 3405 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage<br>(Single-Ended)                                               |      |       |     | 3830 | 3995 | 4160 | 3870 | 4030 | 4190 | 3940 | 4110 | 4280 | mV   |
| $V_{\text{IL}}$    | Input LOW Voltage<br>(Single-Ended)                                                |      |       |     | 3050 | 3285 | 3520 | 3050 | 3285 | 3520 | 3050 | 3302 | 3555 | mV   |
| $V_{BB}$           | Output Voltage Reference                                                           | 3.57 |       | 3.7 | 3.62 |      | 3.74 | 3.65 |      | 3.75 | 3.69 |      | 3.81 | V    |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common<br>Mode Range (Differen-<br>tial Configuration) (Note 3) |      |       |     | 2.2  |      | 4.6  | 2.2  |      | 4.6  | 2.2  |      | 4.6  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                 |      |       | 150 |      |      | 150  |      |      | 150  |      |      | 150  | μΑ   |
| ۱ <sub>IL</sub>    | Input LOW Current                                                                  |      |       |     | 0.5  | 0.3  |      | 0.5  | 0.25 |      | 0.3  | 0.2  |      | μA   |

## Table 3. 10E SERIES PECL DC CHARACTERISTICS ( $V_{CCx}$ = 5.0 V; $V_{EE}$ = 0.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary -0.46 V / +0.06 V. 2. Outputs are terminated through a 50  $\Omega$  resistor to V<sub>CC</sub> - 2.0 V. 3. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, max varies 1:1 with V<sub>CC</sub>.



#### Table 4. 10E SERIES NECL DC CHARACTERISTICS (V<sub>CCx</sub> = 0.0 V; V<sub>EE</sub> = -5.0 V (Note 1))

|                    |                                                                                     |       | -40°C |      |       | 0°C   |       |       | 25°C  |       |       | 85°C  |       |      |
|--------------------|-------------------------------------------------------------------------------------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Symbol             | Characteristic                                                                      | Min   | Тур   | Max  | Min   | Тур   | Max   | Min   | Тур   | Мах   | Min   | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                                |       | 74    | 89   |       | 74    | 89    |       | 74    | 89    |       | 74    | 89    | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage<br>(Note 2)                                                     |       |       |      | -1020 | -930  | -840  | -980  | -895  | -810  | -910  | -815  | -720  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage<br>(Note 2)                                                      |       |       |      | -1950 | -1790 | -1630 | -1950 | -1790 | -1630 | -1950 | -1773 | -1595 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage<br>(Single-Ended)                                                |       |       |      | -1170 | -1005 | -840  | -1130 | -970  | -810  | -1060 | -890  | -720  | mV   |
| VIL                | Input LOW Voltage<br>(Single-Ended)                                                 |       |       |      | -1950 | -1715 | -1480 | -1950 | -1715 | -1480 | -1950 | -1698 | -1445 | mV   |
| $V_{BB}$           | Output Voltage Reference                                                            | -1.43 |       | -1.3 | -1.38 |       | -1.27 | -1.35 |       | -1.25 | -1.31 |       | -1.19 | V    |
| V <sub>IHCMR</sub> | Input HIGH Voltage<br>Common Mode Range<br>(Differential Configuration)<br>(Note 3) |       |       |      | -2.8  |       | -0.4  | -2.8  |       | -0.4  | -2.8  |       | -0.4  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                  |       |       | 150  |       |       | 150   |       |       | 150   |       |       | 150   | μA   |
| IIL                | Input LOW Current                                                                   |       |       |      | 0.5   | 0.3   |       | 0.5   | 0.065 |       | 0.3   | 0.2   |       | μA   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V\_{CC}. V\_{EE} can vary –0.46 V / +0.06 V.

2. Outputs are terminated through a 50  $\Omega$  resistor to  $V_{CC}$  – 2.0 V.

3.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ , max varies 1:1 with  $V_{CC}$ .

#### Table 5. 100E SERIES PECL DC CHARACTERISTICS (V<sub>CCx</sub> = 5.0 V; V<sub>EE</sub> = 0.0 V (Note 1))

|                 |                                                                                         |      | -40°C |      |      | 0°C  |      |      | 25°C |      |      | 85°C |      |      |
|-----------------|-----------------------------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Symbol          | Characteristic                                                                          | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                                                    |      | 74    | 89   |      | 74   | 89   |      | 74   | 89   |      | 85   | 102  | mA   |
| V <sub>OH</sub> | Output HIGH Voltage<br>(Note 2)                                                         |      |       |      | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | mV   |
| V <sub>OL</sub> | Output LOW Voltage<br>(Note 2)                                                          |      |       |      | 3190 | 3295 | 3380 | 3190 | 3255 | 3380 | 3190 | 3260 | 3380 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage<br>(Single-Ended)                                                    |      |       |      | 3835 | 3975 | 4120 | 3835 | 3975 | 4120 | 3835 | 3975 | 4120 | mV   |
| V <sub>IL</sub> | Input LOW Voltage<br>(Single-Ended)                                                     |      |       |      | 3190 | 3355 | 3525 | 3190 | 3355 | 3525 | 3190 | 3355 | 3525 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                                                | 3.62 |       | 3.74 | 3.62 |      | 3.74 | 3.62 |      | 3.74 | 3.62 |      | 3.74 | V    |
| VIHCMR          | Input HIGH Voltage Com-<br>mon Mode Range (Differ-<br>ential Configuration)<br>(Note 3) |      |       |      | 2.2  |      | 4.6  | 2.2  |      | 4.6  | 2.2  |      | 4.6  | V    |
| I <sub>IH</sub> | Input HIGH Current                                                                      |      |       | 150  |      |      | 150  |      |      | 150  |      |      | 150  | μA   |
| IIL             | Input LOW Current                                                                       |      |       |      | 0.5  | 0.3  |      | 0.5  | 0.25 |      | 0.5  | 0.2  |      | μA   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary -0.46 V / +0.8 V. 2. Outputs are terminated through a 50  $\Omega$  resistor to V<sub>CC</sub> - 2.0 V. 3. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, max varies 1:1 with V<sub>CC</sub>.



|                 |                                                                                  |       | –40°C 0°C 25°C |       |       |       |       |       |       |       |       |       |       |      |
|-----------------|----------------------------------------------------------------------------------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Symbol          | Characteristic                                                                   | Min   | Тур            | Max   | Min   | Тур   | Max   | Min   | Тур   | Max   | Min   | Тур   | Max   | Unit |
| I <sub>EE</sub> | Power Supply Current                                                             |       | 74             | 89    |       | 74    | 89    |       | 74    | 89    |       | 85    | 102   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 2)                                                     |       |                |       | -1025 | -950  | -880  | -1025 | -950  | -880  | -1025 | -950  | -880  | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 2)                                                      |       |                |       | -1810 | -1705 | -1620 | -1810 | -1745 | -1620 | -1810 | -1740 | -1620 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage<br>(Single-Ended)                                             |       |                |       | -1165 | -1025 | -880  | -1165 | -1025 | -880  | -1165 | -1025 | -880  | mV   |
| V <sub>IL</sub> | Input LOW Voltage<br>(Single-Ended)                                              |       |                |       | -1810 | -1645 | -1475 | -1810 | -1645 | -1475 | -1810 | -1645 | -1475 | mV   |
| $V_{BB}$        | Output Voltage Reference                                                         | -1.38 |                | -1.26 | -1.38 |       | -1.26 | -1.38 |       | -1.26 | -1.38 |       | -1.26 | V    |
| VIHCMR          | Input HIGH Voltage Common<br>Mode Range (Differential<br>Configuration) (Note 3) |       |                |       | -2.8  |       | -0.4  | -2.8  |       | -0.4  | -2.8  |       | -0.4  | V    |
| I <sub>IH</sub> | Input HIGH Current                                                               |       |                | 150   |       |       | 150   |       |       | 150   |       |       | 150   | μA   |
| Ι <sub>ΙL</sub> | Input LOW Current                                                                |       |                |       | 0.5   | 0.3   |       | 0.5   | 0.25  |       | 0.5   | 0.2   |       | μA   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary –0.46 V / +0.8 V. 2. Outputs are terminated through a 50  $\Omega$  resistor to V<sub>CC</sub> – 2.0 V.

3.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ , max varies 1:1 with  $V_{CC}$ .

### Table 7. AC CHARACTERISTICS ( $V_{CCx} = 5.0 \text{ V}$ ; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$ ; $V_{EE} = -5.0 \text{ V}$ (Note 1))

|                                      |                                                             |                   | –40°C             |                   |                   | 25°C              |                   |                   | 85°C              |                   |      |
|--------------------------------------|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| Symbol                               | Characteristic                                              | Min               | Тур               | Max               | Min               | Тур               | Max               | Min               | Тур               | Max               | Unit |
| f <sub>MAX</sub>                     | Maximum Toggle Frequency                                    | 1.1               |                   |                   | 1.1               |                   |                   | 1.1               |                   |                   | GHz  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay to Output<br>CLK (Diff)<br>CLK (SE)<br>MR | 425<br>375<br>375 | 600<br>600<br>625 | 850<br>900<br>900 | 475<br>425<br>425 | 600<br>600<br>625 | 800<br>850<br>900 | 475<br>425<br>425 | 600<br>600<br>625 | 800<br>850<br>900 | ps   |
| t <sub>S</sub>                       | Setup Time<br>D                                             | 175               | -50               |                   | 150               | -50               |                   | 150               | -50               |                   | ps   |
| t <sub>H</sub>                       | Hold Time<br>D                                              | 225               | 50                |                   | 200               | 50                |                   | 200               | 50                |                   | ps   |
| t <sub>RR</sub>                      | Reset Recovery Time                                         | 750               | 450               |                   | 700               | 450               |                   | 700               | 450               |                   |      |
| t <sub>PW</sub>                      | Minimum Pulse Width<br>CLK<br>MR                            | 400<br>400        |                   |                   | 400<br>400        |                   |                   | 400<br>400        |                   |                   | ps   |
| t <sub>skew</sub>                    | Within-Device Skew (Note 2)                                 |                   | 50                |                   |                   |                   |                   |                   | 50                |                   | ps   |
| t <sub>JITTER</sub>                  | Random Clock Jitter (RMS)                                   |                   | < 1.0             |                   |                   | < 1.0             |                   |                   | < 1.0             |                   | ps   |
| V <sub>PP</sub>                      | Input Voltage Swing<br>(Differential Configuration)         | 150               |                   | 1000              | 150               |                   | 1000              | 150               |                   | 1000              | mV   |
| t <sub>r</sub> /t <sub>f</sub>       | Rise/Fall Times 20–80%                                      | 250               | 475               | 725               |                   |                   |                   | 275               | 475               | 675               | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10 Series: V<sub>EE</sub> can vary -0.46 V / +0.06 V. 100 Series: V<sub>EE</sub> can vary -0.46 V / +0.8 V.

2. Within-device skew is defined as identical transitions on similar paths through a device.



**Distributor of ON Semiconductor: Excellent Integrated System Limited** Datasheet of MC100E452FN - IC REGISTER 5BIT DIFF ECL 28PLCC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

# MC10E452, MC100E452

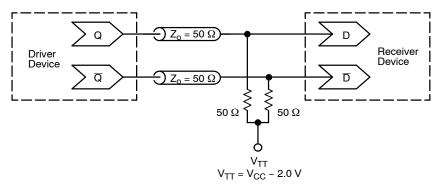
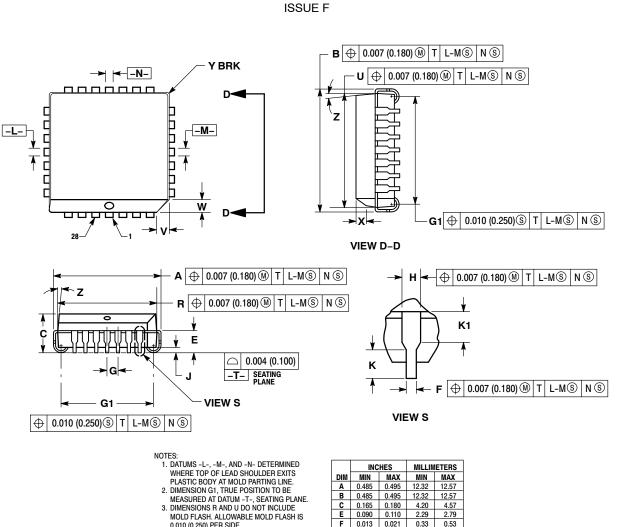



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)


### **Resource Reference of Application Notes**

| AN1405/D  | - | ECL Clock Distribution Techniques           |
|-----------|---|---------------------------------------------|
| AN1406/D  | - | Designing with PECL (ECL at +5.0 V)         |
| AN1503/D  | - | ECLinPS <sup>™</sup> I/O SPiCE Modeling Kit |
| AN1504/D  | - | Metastability and the ECLinPS Family        |
| AN1568/D  | - | Interfacing Between LVDS and ECL            |
| AN1672/D  | - | The ECL Translator Guide                    |
| AND8001/D | - | Odd Number Counters Design                  |
| AND8002/D | - | Marking and Date Codes                      |
| AND8020/D | - | Termination of ECL Logic Devices            |
| AND8066/D | - | Interfacing with ECLinPS                    |
| AND8090/D | - | AC Characteristics of ECL Devices           |



## PACKAGE DIMENSIONS

28 LEAD PLLC CASE 776-02



- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. A. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH. THE BAR BUIDBS. CATE BUIDBS CAN DINTER FAD. BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE
- BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

|     | INC   | HES   | MILLIN | IETERS |
|-----|-------|-------|--------|--------|
| DIM | MIN   | MAX   | MIN    | MAX    |
| Α   | 0.485 | 0.495 | 12.32  | 12.57  |
| В   | 0.485 | 0.495 | 12.32  | 12.57  |
| C   | 0.165 | 0.180 | 4.20   | 4.57   |
| Е   | 0.090 | 0.110 | 2.29   | 2.79   |
| F   | 0.013 | 0.021 | 0.33   | 0.53   |
| G   | 0.050 | ) BSC | 1.27   | BSC    |
| Н   | 0.026 | 0.032 | 0.66   | 0.81   |
| J   | 0.020 |       | 0.51   |        |
| K   | 0.025 |       | 0.64   |        |
| R   | 0.450 | 0.456 | 11.43  | 11.58  |
| U   | 0.450 | 0.456 | 11.43  | 11.58  |
| ۷   | 0.042 | 0.048 | 1.07   | 1.21   |
| W   | 0.042 | 0.048 | 1.07   | 1.21   |
| X   | 0.042 | 0.056 | 1.07   | 1.42   |
| Y   |       | 0.020 |        | 0.50   |
| Z   | 2 °   | 10°   | 2 °    | 10°    |
| G1  | 0.410 | 0.430 | 10.42  | 10.92  |
| K1  | 0.040 |       | 1.02   |        |



ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out d, directly or indirectly, any claim of personal injury or death associated wi

#### PUBLICATION ORDERING INFORMATION

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA

LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor

Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC10E452/D