

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

EPCOS (TDK) B39820B3666Z710

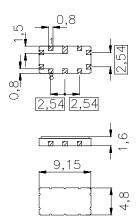
For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

SAW Components

Data Sheet B3666

Distributor of EPCOS (TDK): Excellent Integrated System Limited Datasheet of B39820B3666Z710 - FILTER SAW 82.2MHZ LOWLOSS SMD

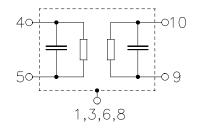
SAW Components	B3666
Low-Loss Filter	82,20 MHz
Data Sheet	


Ceramic SMD package QCC10B

Features

- Low-loss IF filter
- Ceramic SMD package
- Balanced or unbalanced operation possible
- Low insertion attenuation, high selectivity

Terminals


Gold-plated

Dimensions in mm, approx. weight 0,23 g

Pin configuration

4, 5	Input
9,10	Output
1,3,6,8	Case ground
2,7	To be grounded

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B3666	B39820-B3666-Z710	C61157-A7-A49	F61064-V8035-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

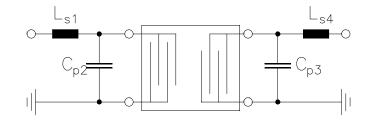
Operable temperature range	Т	- 30/+ 80	°C
Storage temperature range	T _{stg}	- 40/+ 85	°C
DC voltage	V _{DC}	0	V
Source power	Ps	10	dBm

2

Distributor of EPCOS (TDK): Excellent Integrated System Limited Datasheet of B39820B3666Z710 - FILTER SAW 82.2MHZ LOWLOSS SMD

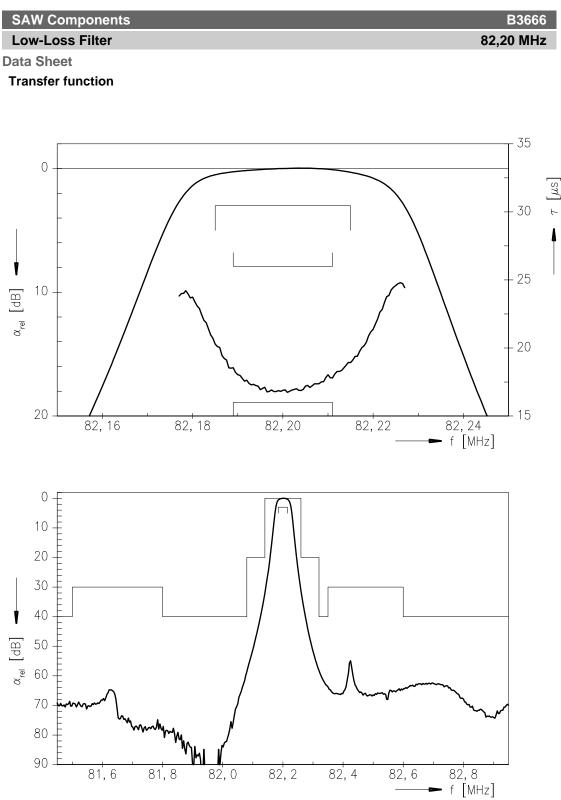
SAW Components					B3666
Low-Loss Filter				82,2	0 MHz
Data Sheet					
Characteristics					
•	= -10 .				
			ed and mate		
Terminating load impedance: Z_{L}	= 50	2 unbalance	ed and mate	ching netw	vork
		min.	typ.	max.	
Nominal frequency	f _N	—	82,2		MHz
Minimum insertion loss	$lpha_{min}$	_	3,7	5,0	dB
3dB bandwidth		30	50	_	kHz
Amplitude variation (p-p)	Δα				
f _N - 15 kHz f _N + 15 kHz		_	0,9	3,0	dB
Amplitude ripple (peak to adjacent valley)	$\Delta \alpha$				
f _N - 15 kHz f _N + 15 kHz		-	0,0	1,5	dB
Absolute group delay $(at f_N)$	τ	_	16	—	μs
Group delay ripple (p-p)	$\Delta \tau$				
f _N - 11 kHz f _N + 11 kHz		-	1,6	10	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f _N – 1000 kHz f _N – 925 kHz		40	70	—	dB
f _N – 925 kHz f _N – 885 kHz		70	75	—	dB
f _N – 885 kHz f _N – 700 kHz f _N – 700 kHz f _N – 400 kHz		40 30	70 65	_	dB dB
$f_N = 400 \text{ kHz} \dots f_N = 400 \text{ kHz}$ $f_N = 400 \text{ kHz} \dots f_N = 120 \text{ kHz}$		40	60	_	dB
$f_N = 400 \text{ kHz} \dots f_N = 120 \text{ kHz}$ $f_N = 120 \text{ kHz} \dots f_N = 60 \text{ kHz}$		20	34	_	dB
$f_N + 60 \text{ kHz} \dots f_N + 120 \text{ kHz}$		20	29	_	dB
f _N + 120 kHz f _N + 150 kHz		40	57	—	dB
f_{N} + 150 kHz f_{N} + 400 kHz		30	55	—	dB
f_{N} + 400 kHz f_{N} + 1000 kHz		40	55	—	dB
Intermodulation distortion					
Intermodulation in the composit signal by $f_N \pm 6$	0		_	-90	dB
kHz and $f_N \pm 120$ kHz, each of -20 dBm					
Temperature coefficient of frequency 1)	TC _f	_	- 0,036		ppm/K ²
Turnover temperature	T_0		30	_	°C

¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$


3

SAW Components	B3666
Low-Loss Filter	82,20 MHz
Data Sheet	

Matching network (element values depend on pcb layout)



 $L_{s1} = 470 \text{ nH}$ $C_{p2} = 3,9 \text{ pF}$ $C_{p3} = 3,9 \text{ pF}$ $L_{s4} = 470 \text{ nH}$

Δ

5

SAW Components

Low-Loss Filter

Data Sheet

B3666 82,20 MHz

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E NK P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.