# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTQD6968NR2

For any questions, you can email us directly: <a href="mailto:sales@integrated-circuit.com">sales@integrated-circuit.com</a>



## NTQD6968N

## **Power MOSFET**

# 7.0 A, 20 V, Common Drain, Dual N-Channel, TSSOP-8

#### **Features**

- Low R<sub>DS(on)</sub>
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- 3 mm Wide TSSOP-8 Surface Mount Package
- High Speed, Soft Recovery Diode
- TSSOP-8 Mounting Information Provided
- Pb-Free Package is Available

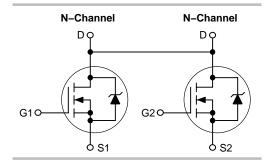
#### **Applications**

• Battery Protection Circuits

## **MAXIMUM RATINGS** (T<sub>C</sub> = 25°C unless otherwise noted)

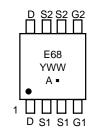
| Rating                                                                                                                     | Symbol                                              | Value            | Unit |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|------|
| Drain-to-Source Voltage                                                                                                    | V <sub>DSS</sub>                                    | 20               | Vdc  |
| Gate-to-Source Voltage - Continuous                                                                                        | V <sub>GS</sub>                                     | ±12              | Vdc  |
| Drain Current  - Continuous @ T <sub>A</sub> 25°C (Note 1)  - Continuous @ T <sub>A</sub> 70°C (Note 1)  - Pulsed (Note 3) | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 7.0<br>5.6<br>20 | Adc  |
| Total Power Dissipation @ T <sub>A</sub> 25°C (Note 1)                                                                     | P <sub>D</sub>                                      | 1.81             | W    |
| Drain Current  - Continuous @ T <sub>A</sub> 25°C (Note 2)  - Continuous @ T <sub>A</sub> 70°C (Note 2)  - Pulsed (Note 3) | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | 6.2<br>4.9<br>18 | Adc  |
| Total Power Dissipation @ T <sub>A</sub> 25°C (Note 2)                                                                     | P <sub>D</sub>                                      | 1.39             | W    |
| Operating and Storage Temperature Range                                                                                    | T <sub>J</sub> , T <sub>stg</sub>                   | -55 to<br>+150   | ç    |
| Thermal Resistance – Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)                                             | $R_{\theta JA}$                                     | 69<br>90         | °C/W |
| Maximum Lead Temperature for Soldering Purposes for 10 seconds                                                             | TL                                                  | 260              | ç    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz. Cu 0.06" thick single sided), t ≤ 10 sec.
- 2. Mounted onto a 2" square FR–4 Board
  - (1 in sq, 2 oz. Cu 0.06" thick single sided), Steady State.
- 3. Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle = 2%.



#### ON Semiconductor®


#### http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 20 V                 | 17 mΩ @ 4.5 V           | 7.0 A              |



# MARKING DIAGRAM & PIN ASSIGNMENT





E68 = Specific Device Code A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

#### **ORDERING INFORMATION**

| Device       | Package              | Shipping <sup>†</sup> |
|--------------|----------------------|-----------------------|
| NTQD6968N    | TSSOP-8              | 100 Units / Rail      |
| NTQD6968NR2  | TSSOP-8              | 4000/Tape & Reel      |
| NTQD6968NR2G | TSSOP-8<br>(Pb-Free) | 4000/Tape & Reel      |

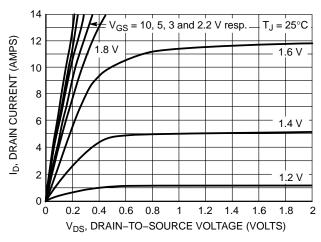
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Datasheet of NTQD6968NR2 - MOSFET 2N-CH 20V 6.2A 8TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## NTQD6968N

#### **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted)


| Characteristic                                                                                                                                                                                   |                                                                                        |                                                                                 | Min                     | Тур                     | Max           | Unit         |           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|-------------------------|---------------|--------------|-----------|------|
| OFF CHARACTERISTICS                                                                                                                                                                              |                                                                                        |                                                                                 |                         |                         |               |              |           |      |
| Drain-to-Source Breakdown Voltage $(V_{GS}=0\ Vdc,\ I_D=250\ \mu Adc)$ Temperature Coefficient (Positive)                                                                                        |                                                                                        | V <sub>(BR)DSS</sub>                                                            | 20<br>-                 | _<br>16                 | _<br>_        | Vdc<br>mV/°C |           |      |
| Zero Gate Voltage Collector Current $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C})$ $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ |                                                                                        | $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 25^{\circ}\text{C})$ |                         | I <sub>DSS</sub>        | <u>-</u><br>- | _<br>_       | 1.0<br>10 | μAdc |
| Gate–Body Leakage Current<br>(V <sub>GS</sub> = ±12 Vdc, V <sub>DS</sub> = 0 Vdc)                                                                                                                |                                                                                        | I <sub>GSS</sub>                                                                | -                       | -                       | ±100          | nAdc         |           |      |
| ON CHARACTERISTICS                                                                                                                                                                               |                                                                                        | •                                                                               |                         | •                       | 1             | · ·          |           |      |
| Gate Threshold Voltage ( $V_{DS} = V_{GS}, I_D = 250 \mu Adc$ )<br>Temperature Coefficient (Negative)                                                                                            | V <sub>GS(th)</sub>                                                                    | 0.6                                                                             | 0.75<br>3.0             | 1.2                     | Vdc<br>mV/°C  |              |           |      |
|                                                                                                                                                                                                  | R <sub>DS(on)</sub>                                                                    | -<br>-<br>-                                                                     | 0.017<br>0.022<br>0.022 | 0.022<br>0.030<br>0.030 | Ω             |              |           |      |
| Forward Transconductance (V <sub>DS</sub> =                                                                                                                                                      | 9 <sub>FS</sub>                                                                        | _                                                                               | 19.2                    | _                       | Mhos          |              |           |      |
| DYNAMIC CHARACTERISTICS                                                                                                                                                                          |                                                                                        |                                                                                 |                         |                         |               |              |           |      |
| Input Capacitance                                                                                                                                                                                |                                                                                        | C <sub>iss</sub>                                                                | -                       | 630                     | -             | pF           |           |      |
| Output Capacitance                                                                                                                                                                               | $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$               | C <sub>oss</sub>                                                                | -                       | 260                     | -             |              |           |      |
| Transfer Capacitance                                                                                                                                                                             | ,                                                                                      | C <sub>rss</sub>                                                                | -                       | 95                      | -             |              |           |      |
| SWITCHING CHARACTERISTICS                                                                                                                                                                        | (Notes 4 and 5)                                                                        |                                                                                 |                         |                         |               |              |           |      |
| Turn-On Delay Time                                                                                                                                                                               |                                                                                        | t <sub>d(on)</sub>                                                              | -                       | 8.0                     | -             | ns           |           |      |
| Rise Time                                                                                                                                                                                        | $(V_{DD} = 16 \text{ Vdc}, I_D = 7.0 \text{ Adc},$                                     | t <sub>r</sub>                                                                  | -                       | 25                      | _             |              |           |      |
| Turn-Off Delay Time                                                                                                                                                                              | $V_{GS} = 4.5 \text{ Vdc}, R_G = 6.0 \Omega)$                                          | t <sub>d(off)</sub>                                                             | -                       | 60                      | _             |              |           |      |
| Fall Time                                                                                                                                                                                        |                                                                                        | t <sub>f</sub>                                                                  | -                       | 65                      | _             |              |           |      |
| Gate Charge                                                                                                                                                                                      | $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 4.5 \text{ Vdc}, I_{D} = 7.0 \text{ Adc})$         | Q <sub>tot</sub>                                                                | -                       | 12.5                    | 17            | nC           |           |      |
|                                                                                                                                                                                                  |                                                                                        | $Q_{gs}$                                                                        | -                       | 1.0                     | -             |              |           |      |
|                                                                                                                                                                                                  |                                                                                        | $Q_{gd}$                                                                        | -                       | 5.0                     | -             |              |           |      |
| BODY-DRAIN DIODE RATINGS (I                                                                                                                                                                      | Note 4)                                                                                |                                                                                 |                         | _                       |               |              |           |      |
| Forward On-Voltage                                                                                                                                                                               | $(I_S = 7.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$                                      | $V_{SD}$                                                                        | =                       | 0.82                    | 1.2           | Vdc          |           |      |
| Reverse Recovery Time                                                                                                                                                                            | (I <sub>S</sub> = 7.0 Adc, V <sub>GS</sub> = 0 Vdc,<br>dI <sub>S</sub> /dt = 100 A/μs) | t <sub>rr</sub>                                                                 | -                       | 35                      | _             | ns           |           |      |
|                                                                                                                                                                                                  |                                                                                        | ta                                                                              | -                       | 15                      | _             |              |           |      |
|                                                                                                                                                                                                  |                                                                                        | t <sub>b</sub>                                                                  | -                       | 20                      | _             |              |           |      |
| Reverse Recovery Stored Charge                                                                                                                                                                   |                                                                                        | $Q_{RR}$                                                                        | -                       | 0.02                    | _             | μС           |           |      |

Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperature.

Datasheet of NTQD6968NR2 - MOSFET 2N-CH 20V 6.2A 8TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


## NTQD6968N



 $V_{DS} \ge 10 \text{ V}$ 12 ID, DRAIN CURRENT (AMPS) 10 8 6 T<sub>J</sub> = 125°C  $T_J = 25^{\circ}C$ 2 -55°C  $T_J =$ 01 0 0.5 2.5  $V_{GS}$ , GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics



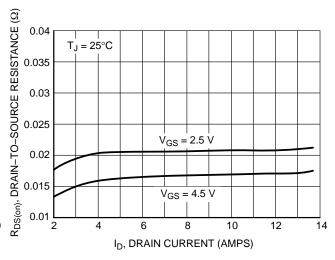
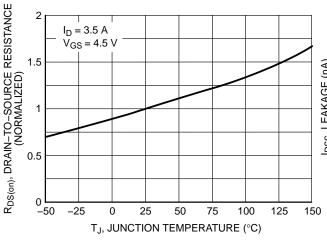




Figure 3. On–Resistance versus Gate–to–Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage



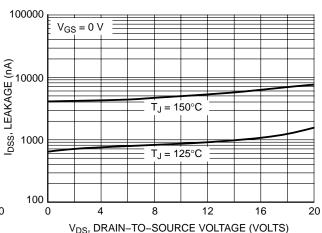
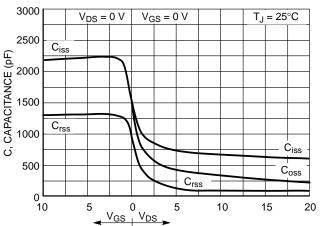



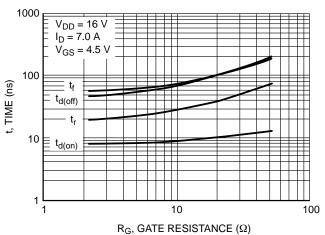

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

## NTQD6968N



V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (VOLTS)  $Q_2$  $I_D = 7.0 A$  $T_J = 25^{\circ}C$ 2.5 5 7.5 10 0 12.5


VGS

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage versus Total Charge

Qq, TOTAL GATE CHARGE (nC)



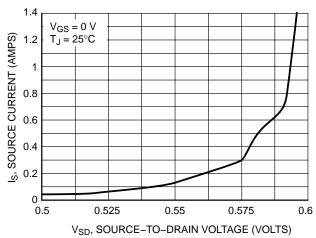
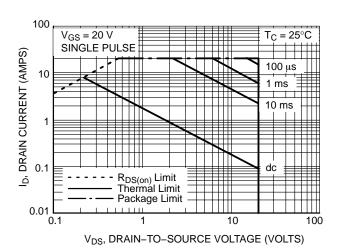




Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current



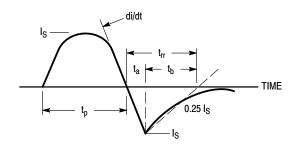



Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Diode Reverse Recovery Waveform

Datasheet of NTQD6968NR2 - MOSFET 2N-CH 20V 6.2A 8TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## NTQD6968N

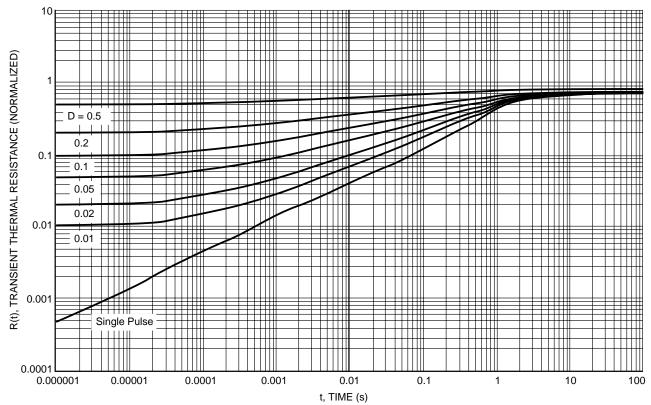
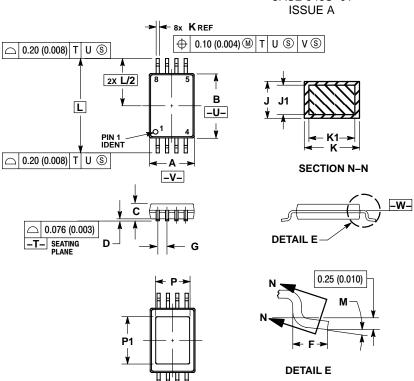



Figure 13. Thermal Response


Datasheet of NTQD6968NR2 - MOSFET 2N-CH 20V 6.2A 8TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## NTQD6968N

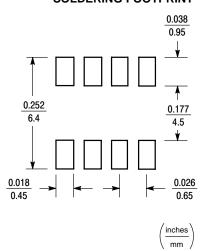
### **PACKAGE DIMENSIONS**





#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
  - DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
     CONTROLLING DIMENSION: MILLIMETER.
     DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED ALL (ADM DED SIDE.)
- 0.15 (0.006) PER SIDE.


  DIMENSION B DOES NOT INCLUDE
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION SHALL NOT
- INTERLEAD FLASH OR PROTRUSION SHALL EXCEED 0.25 (0.010) FER SIDE.

  5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

  6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INCHES    |       |  |
|-----|-------------|------|-----------|-------|--|
| DIM | MIN         | MAX  | MIN       | MAX   |  |
| Α   | 2.90        | 3.10 | 0.114     | 0.122 |  |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |  |
| С   |             | 1.10 |           | 0.043 |  |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |  |
| F   | 0.50        | 0.70 | 0.020     | 0.028 |  |
| G   | 0.65 BSC    |      | 0.026 BSC |       |  |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |  |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |  |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |  |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |  |
| L   | 6.40 BSC    |      | 0.252 BSC |       |  |
| M   | 0°          | 8°   | 0°        | 8°    |  |
| Р   |             | 2.20 |           | 0.087 |  |
| P1  |             | 3.20 |           | 0.126 |  |

## **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



Datasheet of NTQD6968NR2 - MOSFET 2N-CH 20V 6.2A 8TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## NTQD6968N

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

**Japan Customer Focus Center** Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTQD6968N/D