Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: <u>Texas Instruments</u> <u>SN74SSTVF16859G4R</u> For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 | • | Member of the Texas Instruments
Widebus™ Family | | PACKA(
P VIEW) | _ | |---|--|-------------------------------------|-------------------|-------------------------| | • | Operates at 2.3 V to 2.7 V for PC1600, PC2100, and PC2700 | Q13A 1
Q12A 2 | | V _{DDQ}
GND | | • | Operates at 2.5 V to 2.7 V for PC3200 (QFN Package) | Q11A [3
Q10A [4 | 62 | D13 | | • | Pinout and Functionality Compatible With JEDEC Standard SSTV16859 | Q9A [5
V _{DDQ} [6 | 60 | V _{CC} | | • | 600 ps Faster (Simultaneous Switching) Than the JEDEC Standard SSTV16859 in PC2700 DIMM Applications | GND [7
Q8A [8
Q7A [9 | 58
57 | GND
D11
D10 | | • | 1-to-2 Outputs to Support Stacked DDR DIMMs | Q6A 10
Q5A 11 | 54 | D9
GND | | • | Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line | Q4A [] 12
Q3A [] 13
Q2A [] 14 | 52 | D8
D7
RESET | | • | Outputs Meet SSTL_2 Class I Specifications | GND 11
Q1A 11
Q1A 11 | 50 | GND
CLK | | • | Supports SSTL_2 Data Inputs | Q13B 17 | | CLK | | • | Differential Clock (CLK and CLK) Inputs | V _{DDQ} [] 18 | 47 | V _{DDQ} | | • | Supports LVCMOS Switching Levels on the | Q12B 🛚 19 | | □ v _{cc} | | | RESET Input | Q11B 20 | | V _{REF} | | • | RESET Input Disables Differential Input | Q10B 21 | |] D6 | | | Receivers, Resets All Registers, and | Q9B 22
Q8B 23 | |] GND
] D5 | | | Forces All Outputs Low | Q7B 23 | | D3 | | • | Pinout Optimizes DIMM PCB Layout | Q6B 25 | | D3 | | • | Latch-Up Performance Exceeds 100 mA Per | GND 26 | | GND | | | JESD 78, Class II | V _{DDQ} [] 27 | | V _{DDQ} | | • | ESD Protection Exceeds JESD 22 | Q5B 🛚 28 | 37 |] v _{cc} | ## - 1000-V Charged-Device Model (C101) description/ordering information - 200-V Machine Model (A115-A) - 2000-V Human-Body Model (A114-A) This 13-bit to 26-bit registered buffer is designed for 2.3-V to 2.7-V V_{CC} operation. #### **ORDERING INFORMATION** | TA | PACKAG | GE† | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | | |-------------|---------------------------------|---------------|--------------------------|---------------------|--| | | QFN – RGQ
(Tin-Pb Finish) | Tape and reel | SN74SSTVF16859SR | - SSF859 | | | 0°C to 70°C | QFN – RGQ
(Matte-Tin Finish) | | SN74SSTVF16859S8 | 355039 | | | | TSSOP - DGG | Tape and reel | SN74SSTVF16859GR | SSTVF16859 | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments 36 D2 35 D1 34 | GND 33 🛮 V_{DDQ} Q4B [29 Q3B | 30 Q2B [] 31 Q1B Π 32 Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 #### description/ordering information (continued) All inputs are SSTL_2, except the LVCMOS reset (RESET) input. All outputs are edge-controlled LVCMOS circuits optimized for unterminated DIMM loads. The SN74SSTVF16859 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low. The device supports low-power standby operation. When $\overline{\text{RESET}}$ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (V_{RFF}) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low. The LVCMOS RESET input always must be held at a valid logic high or low level. To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up. **RGQ PACKAGE** [†] The center die pad must be connected to GND. #### **FUNCTION TABLE** | | INP | UTS | | OUTPUT | |-------|---------------|---------------|---------------|--------| | RESET | CLK | Q | | | | Н | 1 | \downarrow | Н | Н | | Н | \uparrow | \downarrow | L | L | | Н | L or H | L or H | Χ | Q_0 | | L | X or floating | X or floating | X or floating | L | Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 ### logic diagram (positive logic) Pin numbers shown are for the DGG package. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | $-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ | |---| | $-0.5 \text{ V to V}_{DDQ} + 0.5 \text{ V}$ | | –50 mA | | ±50 mA | | ±50 mA | | ±100 mA | | 55°C/W | | 22°C/W | | –65°C to 150°C | | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This value is limited to 3.6 V maximum. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. - 4. The package thermal impedance is calculated in accordance with JESD 51-5. Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 #### recommended operating conditions (see Note 5) | | | | MIN | NOM | MAX | UNIT | | | |--------------------|--|------------------------|-------------------------|------|-------------------------|------|--|--| | Vcc | Supply voltage | | V _{DDQ} | | 2.7 | V | | | | ., | O to to and advant | PC1600, PC2100, PC2700 | 2.3 | | 2.7 | ., | | | | V _{DDQ} | Output supply voltage | PC3200 | 2.5 | | 2.7 | V | | | | ., | Defended (March March Ma | PC1600, PC2100, PC2700 | 1.15 | 1.25 | 1.35 | ., | | | | VREF | Reference voltage ($V_{REF} = V_{DDQ}/2$) | PC3200 | 1.25 | 1.3 | 1.35 | V | | | | VI | Input voltage | | 0 | | VCC | V | | | | VIH | AC high-level input voltage | Data inputs | V _{REF} +310mV | | | V | | | | V_{IL} | AC low-level input voltage | Data inputs | | | V _{REF} -310mV | V | | | | VIH | DC high-level input voltage | Data inputs | V _{REF} +150mV | | | V | | | | V _{IL} | DC low-level input voltage | Data inputs | | | V _{REF} -150mV | V | | | | VIH | High-level input voltage | RESET | 1.7 | | | V | | | | V _{IL} | Low-level input voltage | RESET | | | 0.7 | V | | | | VICR | Common-mode input voltage range | CLK, CLK | 0.97 | | 1.53 | V | | | | V _{I(PP)} | Peak-to-peak input voltage | CLK, CLK | 360 | | | mV | | | | ІОН | High-level output current | | | | -16 | A | | | | l _{OL} | Low-level output current | | | | 16 | mA | | | | TA | Operating free-air temperature | | 0 | | 70 | °C | | | NOTE 5: The RESET input of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. ## electrical characteristics for PC1600, PC2100, and PC2700 over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | | v _{cc} † | MIN | TYP‡ | MAX | UNIT | |------------------|---|---|----------------|--------------------|-----|------|------------|---------------------------------| | VIK | | I _I = -18 mA | | 2.3 V | | | -1.2 | V | | | | I _{OH} = -100 μA | 2.3 V to 2.7 V | V _{DDQ} - | 0.2 | | V | | | VOH | | I _{OH} = -8 mA | 2.3 V | 1.95 | | | V | | | | | I _{OL} = 100 μA | | 2.3 V to 2.7 V | | | 0.2 | V | | VOL | | I _{OL} = 8 mA | 2.3 V | | | 0.35 | V | | | II | All inputs | $V_I = V_{CC}$ or GND | | 2.7 V | | | ±5 | μΑ | | 1 | Static standby | RESET = GND | 1. 0 | 0.71/ | | | 10 | μΑ | | Icc | Static operating | $\overline{RESET} = V_{CC}, V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$ | IO = 0 | 2.7 V | | | 25 | mA | | | Dynamic operating – clock only | RESET = VCC, VI = VIH(AC) or VIL(AC), CLK and CLK switching 50% duty cycle | | | 19 | | μΑ/
MHz | | | ICCD | Dynamic operating – per each data input | RESET = V _{CC} , V _I = V _{IH(AC)} or V _{IL(AC)} ,
CLK and CLK switching 50% duty cycle,
One data input switching at one-half clock
frequency, 50% duty cycle | IO = 0 | 2.5 V | | 7 | | μΑ/
clock
MHz/
D input | | | Data inputs | $V_I = V_{REF} \pm 310 \text{ mV}$ | 2.5 V | 2.5 | 3 | 3.5 | pF | | | C _i § | CLK, CLK | $V_{ICR} = 1.25 \text{ V}, V_{I(PP)} = 360 \text{mV}$ | | 2.5 | 3 | 3.5 | | | | | RESET | V _I = V _{CC} or GND | | | 2.3 | 3 | 3.5 | | [†] For this test condition, VDDQ always is equal to VCC. [‡] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [§] Measured at 50-MHz input frequency Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 ## electrical characteristics for PC3200 over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | | v _{cc} † | MIN | TYP‡ | MAX | UNIT | | |------------------|---|--|--------------------|--------------------|------|------|------------|---------------------------------|--| | VIK | | I _I = -18 mA | | 2.5 V | | | -1.2 | V | | | ., | | I _{OH} = -100 μA | 2.5 V to 2.7 V | V _{DDQ} - | -0.2 | | ., | | | | VOH | | $I_{OH} = -8 \text{ mA}$ | 2.5 V | 1.95 | | | V | | | | | | I _{OL} = 100 μA | | 2.5 V to 2.7 V | | | 0.2 | V | | | VOL | | I _{OL} = 8 mA | 2.5 V | | | 0.35 | V | | | | Ц | All inputs | $V_I = V_{CC}$ or GND | | 2.7 V | | | ±5 | μΑ | | | 1 | Static standby | RESET = GND | 1. 0 | | | | 10 | μΑ | | | Icc | CC Static operating F | $\overline{RESET} = V_{CC}, V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$ | IO = 0 | 2.7 V | | | 25 | mA | | | | Dynamic operating – clock only | RESET = VCC, VI = VIH(AC) or VIL(AC), CLK and CLK switching 50% duty cycle | | | 19 | | μΑ/
MHz | | | | ICCD | Dynamic operating – per each data input | RESET = V _{CC} , V _I = V _{IH} (AC) or V _{IL} (AC),
CLK and CLK switching 50% duty cycle,
One data input switching at one-half clock
frequency, 50% duty cycle | I _O = 0 | 2.6 V | | 7 | | μΑ/
clock
MHz/
D input | | | | Data inputs | $V_I = V_{REF} \pm 310 \text{ mV}$ | | 2.5 | 3 | 3.5 | | | | | C _i § | CLK, CLK | $V_{ICR} = 1.25 \text{ V}, V_{I(PP)} = 360 \text{mV}$ | 2.6 V | 2.5 | 3 | 3.5 | 3.5 pF | | | | | RESET | $V_I = V_{CC}$ or GND | | | 2.3 | 3 | 3.5 | 1 | | [†] For this test condition, VDDQ always is equal to VCC. # timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | | | V _{CC} = | | V _{CC} =
± 0.1 | 2.6 V
V† | UNIT | |-----------------|------------------------|-------------------------------------|--|-------------------|-----|----------------------------|-------------|------| | | | | | MIN | MAX | MIN | MAX | | | fclock | Clock frequency | | | | 500 | | 500 | MHz | | t _W | Pulse duration, CL | K, CLK high or low | 1 | | 1 | | ns | | | tact | Differential inputs a | | 22 | | 22 | ns | | | | tinact | Differential inputs in | nactive time (see Note 7) | | | 22 | | 22 | ns | | | Oatom times | Fast slew rate (see Notes 8 and 10) | D. () (| 0.65 | | 0.65 | | | | t _{su} | Setup time | Slow slew rate (see Notes 9 and 10) | Data before CLK↑, CLK↓ | 0.75 | | 0.75 | | ns | | 4. | Hold time | Fast slew rate (see Notes 8 and 10) | Data after CLK↑, CLK↓ | 0.65 | | 0.65 | · | nc | | th | riola time | Slow slew rate (see Notes 9 and 10) | Data after CLK1, CLK↓ | 0.8 | · | 0.8 | | ns | [†] For this test condition, V_{DDQ} always is equal to V_{CC}. NOTES: 6. VREF must be held at a valid input level, and data inputs must be held low for a minimum time of tact max, after RESET is taken high. - 8. For data signal input slew rate ≥1 V/ns. - 9. For data signal input slew rate ≥0.5 V/ns and <1 V/ns. - 10. CLK, CLK signals input slew rates are ≥1 V/ns. [‡] All typical values are at $V_{CC} = 2.6 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [§] Measured at 50-MHz input frequency ^{7.} VREF, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of t_{inact} max, after RESET is taken low. Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 # switching characteristics for TSSOP over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO | V _{CC} = ± 0.2 | UNIT | | |-------------------|-----------------|----------|-------------------------|------|-----| | | (INFOT) | (OUTPUT) | MIN | MAX | 1 | | f _{max} | | | 500 | | MHz | | t _{pd} ‡ | CLK and CLK | Q | 1.1 | 2.5 | ns | | ^t PHL | RESET | Q | | 5 | ns | [†] For this test condition, VDDQ always is equal to VCC. ## switching characteristics for QFN over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO | V _{CC} = ± 0.2 | 2.5 V
2 V† | V _{CC} = ± 0.1 | UNIT | | |-------------------|-----------------|----------|-------------------------|---------------|-------------------------|------|-----| | | (INPOT) | (OUTPUT) | MIN | MAX | MIN | MAX | | | f _{max} | | | 500 | | 500 | | MHz | | t _{pd} ‡ | CLK and CLK | Q | 1.1 | 2.5 | 1.1 | 2.2 | ns | | t _{PHL} | RESET | Q | | 5 | | 5 | ns | [†] For this test condition, VDDQ always is equal to VCC. ## output slew rates over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | V _{CC} = | 2.5 V
V† | V _{CC} = ± 0.1 | UNIT | | |-----------|------------|------------|-------------------|-------------|-------------------------|------|------| | | | | MIN | MAX | MIN | MAX | | | dV/dt_r | 20% | 80% | 1 | 4 | 1 | 4 | V/ns | | dV/dt_f | 80% | 20% | 1 | 4 | 1 | 4 | V/ns | | dV/dt_∆\$ | 20% or 80% | 80% or 20% | | 1 | | 1 | V/ns | [†] For this test condition, VDDQ always is equal to VCC. [‡] Single-bit switching [‡] Single-bit switching [§] Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate). Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### SN74SSTVF16859 13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES429B - MARCH 2003 - REVISED FEBRUARY 2004 # PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V AND V_{CC} = 2.6 V \pm 0.1 V NOTES: A. C_L includes probe and jig capacitance. - B. ICC tested with clock and data inputs held at V_{CC} or GND, and $I_{O} = 0$ mA. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , input slew rate = 1 V/ns \pm 20% (unless otherwise noted). - D. The outputs are measured one at a time, with one transition per measurement. - E. $V_{TT} = V_{REF} = V_{DDQ}/2$ - F. $V_{IH} = V_{REF} + 310 \text{ mV}$ (ac voltage levels) for differential inputs. $V_{IH} = V_{CC}$ for LVCMOS input. - G. V_{IL} = V_{REF} 310 mV (ac voltage levels) for differential inputs. V_{IL} = GND for LVCMOS input. - H. tpLH and tpHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 25-Mar-2016 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |--------------------|---------|--------------|---------|------|---------|----------------------------|-----------------------|---------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | 74SSTVF16859G4RG4 | ACTIVE | VQFN | RGQ | 56 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAUAG | Level-3-260C-168 HR | 0 to 70 | SSF859 | Samples | | SN74SSTVF16859G4R | ACTIVE | VQFN | RGQ | 56 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAUAG Call TI | Level-3-260C-168 HR | 0 to 70 | SSF859 | Samples | | SN74SSTVF16859GR | ACTIVE | TSSOP | DGG | 64 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | 0 to 70 | SSTVF16859 | Samples | | SN74SSTVF16859GRG4 | ACTIVE | TSSOP | DGG | 64 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | 0 to 70 | SSTVF16859 | Samples | | SN74SSTVF16859S8 | ACTIVE | VQFN | RGQ | 56 | 2000 | Green (RoHS
& no Sb/Br) | CU SN Call TI | Level-3-260C-168 HR | 0 to 70 | SSF859 | Samples | | SN74SSTVF16859S8G3 | ACTIVE | VQFN | RGQ | 56 | 2000 | Green (RoHS
& no Sb/Br) | CU SN | Level-3-260C-168 HR | 0 to 70 | SSF859 | Samples | | SN74SSTVF16859SR | OBSOLET | E VQFN | RGQ | 56 | | TBD | Call TI | Call TI | 0 to 70 | | | | SN74SSTVF16859SRG3 | OBSOLET | E VQFN | RGQ | 56 | | TBD | Call TI | Call TI | 0 to 70 | | | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE**: Product device recommended for new designs. ACTIVE: Floudic device recommended in new designs. LIFEBUY: Thas announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1 # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 25-Mar-2016 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Tl and Tl suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Jul-2012 #### **TAPE AND REEL INFORMATION** #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74SSTVF16859GR | TSSOP | DGG | 64 | 2000 | 330.0 | 24.4 | 8.4 | 17.3 | 1.7 | 12.0 | 24.0 | Q1 | Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Jul-2012 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74SSTVF16859GR | TSSOP | DGG | 64 | 2000 | 367.0 | 367.0 | 45.0 | ### **MECHANICAL DATA** NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice. C. QFN (Quad Flatpack No-Lead) Package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions. E. Package complies to JEDEC MO-220 variation VLLD-2. #### THERMAL PAD MECHANICAL DATA ## RGQ (S-PVQFN-N56) #### PLASTIC QUAD FLATPACK NO-LEAD #### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. NOTE: A. All linear dimensions are in millimeters ### **LAND PATTERN DATA** ## RGQ (S-PVQFN-N56) ## PLASTIC QUAD FLATPACK NO-LEAD #### NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC—SM—782 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad. Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### MECHANICAL DATA MTSS003D - JANUARY 1995 - REVISED JANUARY 1998 #### DGG (R-PDSO-G**) #### **48 PINS SHOWN** #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold protrusion not to exceed 0,15. - D. Falls within JEDEC MO-153 ### **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of SN74SSTVF16859G4R - IC REG BUFF 26BIT SSTL 56-VQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### **Applications** **Products** Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Security www.ti.com/security Logic logic.ti.com Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com www.ti.com/wirelessconnectivity Wireless Connectivity > Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated