Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTB23N03RT4G

For any questions, you can email us directly: sales@integrated-circuit.com

NTB23N03R

Power MOSFET 23 Amps, 25 Volts

N-Channel D²PAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

• Pb-Free Packages are Available

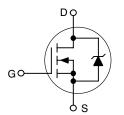
Typical Applications

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High-Efficiency DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	25	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
Drain Current - Continuous @ T_A = 25°C, Limited by Chip - Continuous @ T_A = 25°C, Limited by Package - Single Pulse (t_p = 10 μs)	I _D I _D I _{DM}	23 6.0 60	А
Total Power Dissipation @ T _A = 25°C	P_{D}	37.5	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Thermal Resistance - Junction-to-Case	$R_{\theta JC}$	3.3	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

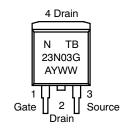
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

23 AMPERES, 25 VOLTS $R_{DS(on)} = 32 \text{ m}\Omega \text{ (Typ)}$


N-CHANNEL

MARKING DIAGRAM & PIN ASSIGNMENTS

D²PAK CASE 418B STYLE 2

NTB23N03 = Specific Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Datasheet of NTB23N03RT4G - MOSFET N-CH 25V 23A D2PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTB23N03R

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Characteristics			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 1) (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)			25 -	28 -	- -	Vdc mV/°C
Zero Gate Voltage Drain Current (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc, T _J = 150°C)		I _{DSS}	- -	- -	1.0 10	μAdc
Gate-Body Leakage Current (V _{GS} = ±20 Vdc, V _{DS} = 0 Vdc)			-	-	±100	nAdc
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage (Note 1) $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ Threshold Temperature Coefficient (Negative)			1.0	1.8 -	2.0	Vdc mV/°C
Static Drain-to-Source On-Resistance (Note 1) $(V_{GS} = 4.5 \text{ Vdc}, I_D = 6 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 6 \text{ Adc})$		R _{DS(on)}	- -	50.3 32.3	60 45	mΩ
Forward Transconductance (Note 1) (V _{DS} = 10 Vdc, I _D = 6 Adc)			_	14	-	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	225	-	pF
Output Capacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$	Coss	-	108	-]
Transfer Capacitance		C _{rss}	-	48	-	
SWITCHING CHARACTERISTICS	(Note 2)					
Turn-On Delay Time		t _{d(on)}	-	2.0	-	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 10 Vdc,	t _r	-	14.9	-]
Turn-Off Delay Time	$I_D = 6 \text{ Adc}, R_G = 3 \Omega$	t _{d(off)}	-	9.9	-]
Fall Time		t _f	-	2.0	-]
Gate Charge	(V _{GS} = 4.5 Vdc, I _D = 6 Adc, V _{DS} = 10 Vdc) (Note 1)	Q _T	-	3.76	-	nC
		Q ₁	-	1.7	-]
	V _{DS} = 10 Vd0/ (Note 1)	Q ₂	-	1.6	-	
SOURCE-DRAIN DIODE CHARAC	CTERISTICS					-
Forward On-Voltage	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 1)}$ $(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	- -	0.87 0.74	1.2	Vdc
Reverse Recovery Time	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 1)}$	t _{rr}	-	8.7	-	ns
		ta	-	5.2	-	1
		t _b	-	3.5	-	1
Reverse Recovery Stored Charge			-	0.003	-	μС

ORDERING INFORMATION

Device	Package	Shipping [†]
NTB23N03R	D ² PAK	50 Units / Rail
NTB23N03RG	D ² PAK (Pb-Free)	50 Units / Rail
NTB23N03RT4	D ² PAK	800 Units / Tape & Reel
NTB23N03RT4G	D ² PAK (Pb-Free)	800 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

NTB23N03R

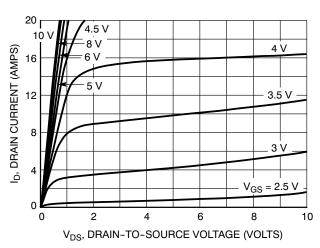


Figure 1. On-Region Characteristics

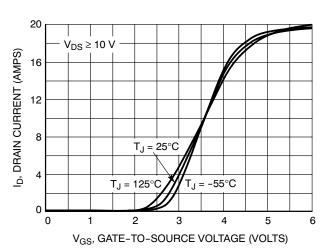


Figure 2. Transfer Characteristics

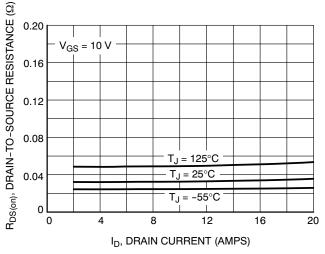


Figure 3. On-Resistance versus Drain Current and Temperature

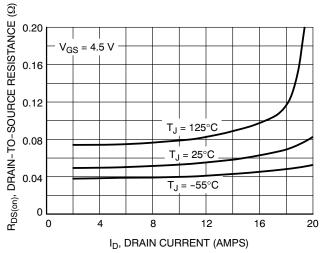


Figure 4. On-Resistance versus Drain Current and Temperature

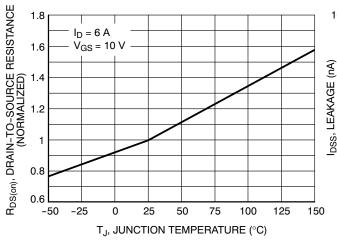


Figure 5. On–Resistance Variation with Temperature

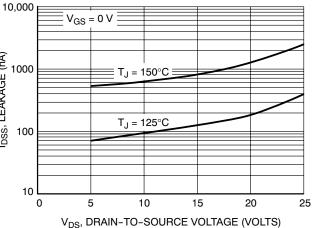


Figure 6. Drain-to-Source Leakage Current versus Voltage

Datasheet of NTB23N03RT4G - MOSFET N-CH 25V 23A D2PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTB23N03R

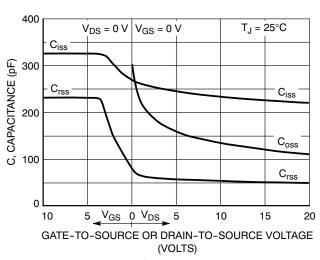


Figure 7. Capacitance Variation

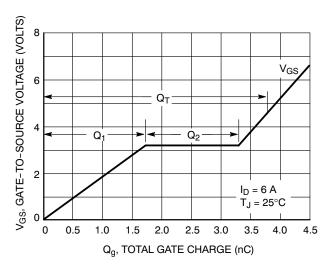


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

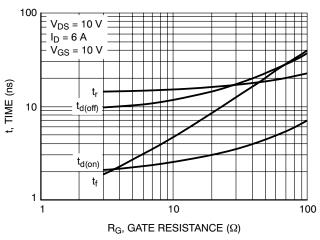


Figure 9. Resistive Switching Time Variation versus Gate Resistance

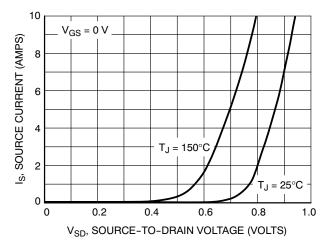
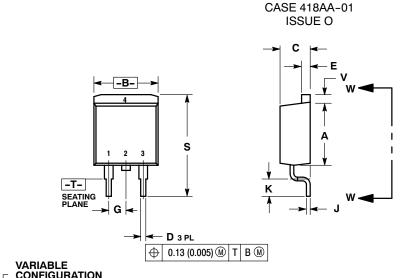


Figure 10. Diode Forward Voltage versus Current


Datasheet of NTB23N03RT4G - MOSFET N-CH 25V 23A D2PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTB23N03R

PACKAGE DIMENSIONS

D²PAK

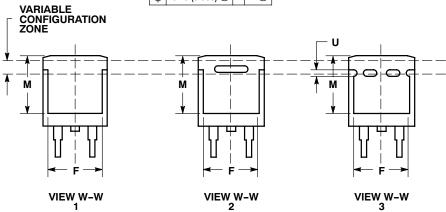
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

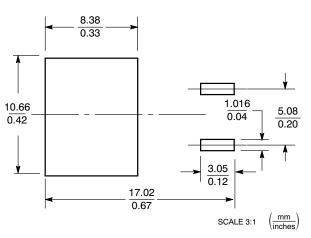
	INCHES		MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.036	0.51	0.92	
E	0.045	0.055	1.14	1.40	
F	0.310		7.87	-	
G	0.100 BSC		2.54	BSC	

 M
 0.100 BSC
 2.54 BSC

 J
 0.018
 0.025
 0.46
 0.64


 K
 0.090
 0.110
 2.29
 2.79

 M
 0.280
 -- 7.11
 --


 S
 0.575
 0.625
 14.60
 15.88

 V
 0.045
 0.055
 1.14
 1.40

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Datasheet of NTB23N03RT4G - MOSFET N-CH 25V 23A D2PAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTB23N03R

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative