Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTGS3433T1G

For any questions, you can email us directly: sales@integrated-circuit.com

NTGS3433T1

MOSFET -3.3 Amps, -12 Volts

P-Channel TSOP-6

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Miniature TSOP-6 Surface Mount Package
- Pb-Free Package is Available

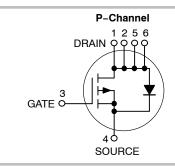
Applications

• Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones, and PCMCIA Cards

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted.)

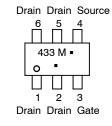
Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	-12	Volts	
Gate-to-Source Voltage - Continuous	V_{GS}	±8.0	Volts	
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (T _p < 10 μS) Maximum Operating Power Dissipation Maximum Operating Drain Current	R _{0JA} Pd I _D I _{DM} Pd I _D	62.5 2.0 -3.3 -20 1.0 -2.35	°C/W Watts Amps Amps Watts Amps	
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (T _p < 10 μS) Maximum Operating Power Dissipation Maximum Operating Drain Current	R _{0JA} P _d I _D I _{DM} P _d I _D	128 1.0 -2.35 -14 0.5 -1.65	°C/W Watts Amps Amps Watts Amps	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C	
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	TL	260	°C	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. Mounted onto a 2" square FR-4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), t < 5.0 seconds.
- Mounted onto a 2" square FR-4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), operating to steady state.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS} R _{DS(on)} TYP		I _D Max
-12 V	75 mΩ @ –4.5 V	-3.3 A

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 CASE 318G STYLE 1

433 = Specific Device Code

M = Date Code*

■ Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3433T1	TSOP-6	3000 Tape & Reel
NTGS3433T1G	TSOP-6 (Pb-Free)	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTGS3433T1G - MOSFET P-CH 12V 2.35A 6-TSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTGS3433T1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Notes 3 & 4)

Char	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						•
Drain–Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = -10 \mu\text{A})$	V _{(BR)DSS}	-12	_	-	Vdc	
Zero Gate Voltage Drain Current $ (V_{GS} = 0 \text{ Vdc}, V_{DS} = -8 \text{ Vdc}, T_J = 25^{\circ}\text{C}) $ $ (V_{GS} = 0 \text{ Vdc}, V_{DS} = -8 \text{ Vdc}, T_J = 70^{\circ}\text{C}) $		I _{DSS}	-	_ _	-1.0 -5.0	μAdc
Gate-Body Leakage Current (V _{GS} = -8.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	-100	nAdc	
Gate-Body Leakage Current (V _{GS} = +8.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	100	nAdc	
ON CHARACTERISTICS						•
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = -250 \mu Adc$)	V _{GS(th)}	-0.50	-0.70	-1.50	Vdc	
Static Drain–Source On–State Re $(V_{GS} = -4.5 \text{ Vdc}, I_D = -3.3 \text{ Add})$ $(V_{GS} = -2.5 \text{ Vdc}, I_D = -2.9 \text{ Add})$	R _{DS(on)}		0.055 0.075	0.075 0.095	Ω	
Forward Transconductance (V _{DS} = -10 Vdc, I _D = -3.3 Add	9FS	_	7.0	-	mhos	
DYNAMIC CHARACTERISTICS						
Total Gate Charge		Q _{tot}	1	7.0	15	nC
Gate-Source Charge	$(V_{DS} = -10 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc}, I_{D} = -3.3 \text{ Adc})$	Q _{gs}	-	2.0	-	
Gate-Drain Charge	,	Q_{gd}	-	3.5	-	
Input Capacitance		C _{iss}	-	550	-	pF
Output Capacitance	$(V_{DS} = -5.0 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	450	-	
Reverse Transfer Capacitance	1	C _{rss}	-	200	-	
SWITCHING CHARACTERISTICS	•					
Turn-On Delay Time		t _{d(on)}	-	20	30	ns
Rise Time	$(V_{DD} = -10 \text{ Vdc}, I_D = -1.0 \text{ Adc},$	t _r	-	20	30	
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc}, R_g = 6.0 \Omega$	t _{d(off)}	-	110	120	
Fall Time		t _f	-	100	115	
Reverse Recovery Time	$(I_S = -1.7 \text{ Adc}, dI_S/dt = 100 \text{ A/}\mu\text{s})$	t _{rr}	-	30	-	ns
BODY-DRAIN DIODE RATINGS						
Diode Forward On-Voltage	(I _S = -1.7 Adc, V _{GS} = 0 Vdc)	V_{SD}	-	-0.80	-1.5	Vdc
Diode Forward On-Voltage	(I _S = -3.3 Adc, V _{GS} = 0 Vdc)	V _{SD}	-	-0.90	-	Vdc
-	-					

Indicates Pulse Test: P.W. = 300 μsec max, Duty Cycle = 2%.
 Class 1 ESD rated – Handling precautions to protect against electrostatic discharge are mandatory.

NTGS3433T1

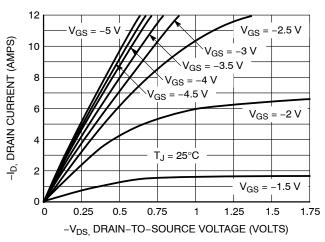


Figure 1. On-Region Characteristics

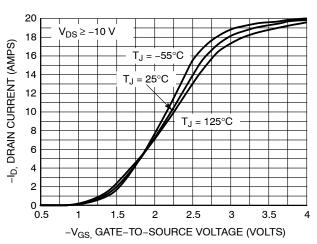


Figure 2. Transfer Characteristics

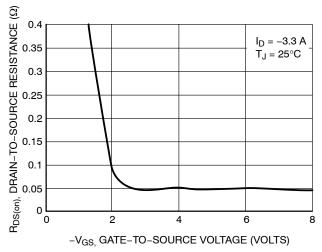


Figure 3. On-Resistance vs. Gate-to-Source Voltage

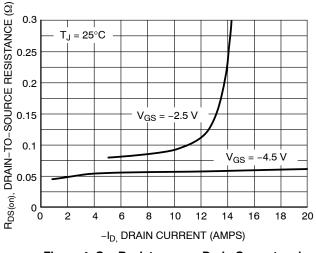


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

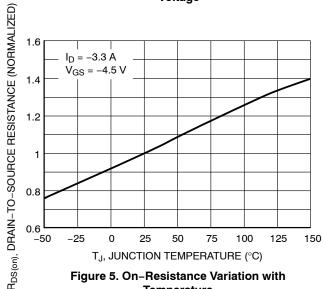


Figure 5. On-Resistance Variation with **Temperature**

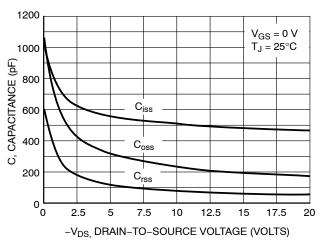
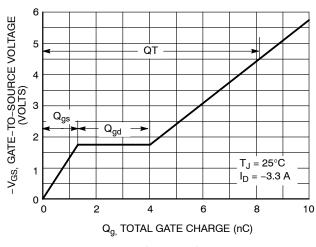



Figure 6. Capacitance Variation

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTGS3433T1

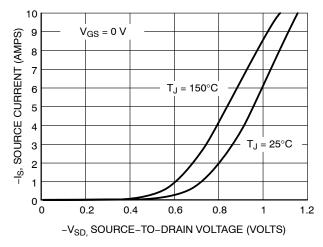


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 8. Diode Forward Voltage vs. Current

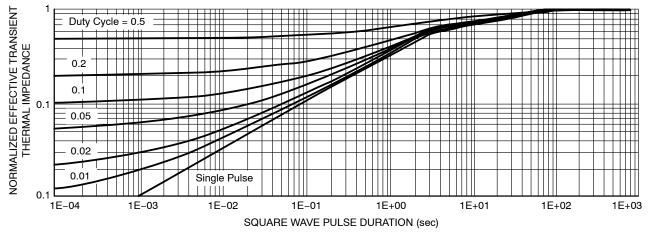


Figure 9. Normalized Thermal Transient Impedance, Junction-to-Ambient

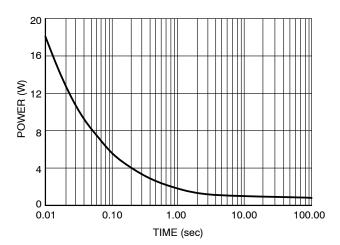
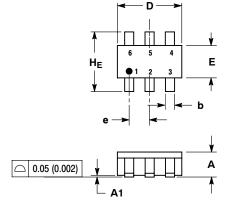
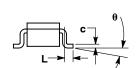


Figure 10. Single Pulse Power

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of NTGS3433T1G - MOSFET P-CH 12V 2.35A 6-TSOP

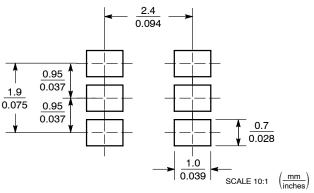

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTGS3433T1

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE P**

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
- BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD FLASH, PROTRUSIONS, OR GATE

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
Δ	00		100	00		100

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE

- 5. DRAIN 6. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negaring the design or manufacture of the part. SCILLC is a Equal to the such associated with such unintended dor unauthorized use, even if such claim alleges that SCILLC was negaring the design or manufacture of the part. SCILLC is an equal to the such associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negaring the design or manufacture of the associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro-ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative