

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTMS4N01R2G

For any questions, you can email us directly: sales@integrated-circuit.com

NTMS4N01R2

Power MOSFET 4.2 Amps, 20 Volts

N-Channel Enhancement-Mode Single SO-8 Package

Features

- High Density Power MOSFET with Ultra Low R_{DS(on)} Providing Higher Efficiency
- Miniature SO–8 Surface Mount Package Saving Board Space;
 Mounting Information for the SO–8 Package is Provided
- I_{DSS} Specified at Elevated Temperature
- Drain-to-Source Avalanche Energy Specified
- Diode Exhibits High Speed, Soft Recovery
- Pb-Free Package is Available

Applications

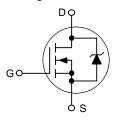
 Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular & Cordless Telephones

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	V
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ m}\Omega$)	V_{DGR}	20	V
Gate-to-Source Voltage - Continuous	V_{GS}	±10	V
Thermal Resistance, Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	50 2.5 5.9 4.7 25	°C/W W A A
Thermal Resistance, Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	100 1.25 4.2 3.3 20	°C/W W A A
Thermal Resistance, Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	162 0.77 3.3 2.6 15	°C/W W A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 20 Vdc, V_{GS} = 5.0 Vdc, Peak I_L = 7.5 Apk, L = 6 mH, R_G = 25 Ω)	E _{AS}	169	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

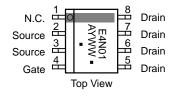
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t < 10 seconds.
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t = steady state.
- Minimum FR-4 or G-10 PCB, t = Steady State.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.



ON Semiconductor®

http://onsemi.com

4.2 AMPERES, 20 VOLTS 0.045 Ω @ V_{GS} = 4.5 V


Single N-Channel

SO-8 CASE 751 STYLE 13

MARKING DIAGRAM AND PIN ASSIGNMENT

E4N01 = Device Code

= Assembly Location

Y = Year WW = Work Week

■ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]				
NTMS4N01R2	SO-8	2500 / Tape & Reel				
NTMS4N01R2G	SO-8 (Pb-Free)	2500 / Tape & Reel				

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTMS4N01R2G - MOSFET N-CH 20V 3.3A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4N01R2

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 5)

OFF CHARACTERISTICS Drain-to-Source Breakdown Voltage (V _S = 0 Volte, lp = 250 µAdc) V(gR)DSS 20 - 1,0 mV/°C Wok -	Characteristic		Symbol	Min	Тур	Max	Unit
VGS = 0 Vdc, g = 250 μAdc)	OFF CHARACTERISTICS	OFF CHARACTERISTICS					
(V _{DS} = 12 Vdc, V _{GS} = 0 Vdc, T _J = 25°C) - - - 1.0 (V _{DS} = 12 Vdc, V _{GS} = 0 Vdc, T _J = 25°C) -	Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μAdc)		V _{(BR)DSS}		- 20		
CVGS = +10 Vdc, VDS = 0 Vdc)	Zero Gate Voltage Drain Current $(V_{DS} = 12 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C})$ $(V_{DS} = 12 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		I _{DSS}	- - -	_		μAdc
V _{GS} = -10 Vdc, V _{DS} = 0 Vdc			I _{GSS}	-	-	100	nAdc
Static Drain-to-Source On-State Resistance (V _{SS} = 4.5 Vdc, lp = 4.2 Adc, V _{SS} = 1.0 Vdc, V _{SS} = 2.3 Ω)			I _{GSS}	_	_	-100	nAdc
(Vps = Vps, lp = 250 μAdc) 0.6 0.95 1.2 mV/°C Static Drain-to-Source On-State Resistance (Vps = 4.5 Vdc, lp = 4.2 Adc) (Vps = 2.5 Vdc, lp = 2.0 Adc) Rps(on) - 0.030 0.035 -0.035 -0.035 -0.035 0.04 0.05 -0.035 -0.035 Ω Forward Transconductance (Vps = 2.5 Vdc, lp = 2.0 Adc) gps - 10 - Mhos PVNAMIC CHARACTERISTICS Input Capacitance (Vps = 10 Vdc, Vps = 0 Vdc, f = 1.0 MHz) Ciss - 870 1200 pF SWITCHING CHARACTERISTICS (Notes 6 & 7) Turn-On Delay Time (Vps = 12 Vdc, lp = 4.2 Adc, Vps = 4.5 Vdc, Rg = 2.3 Ω) to (in) - 13 25 ns Rise Time (Vps = 12 Vdc, Rg = 4.5 Vdc, Rg = 2.3 Ω) Qiot - 45 75 Fall Time (Vps = 12 Vdc, Vps = 4.5 Vdc, V	ON CHARACTERISTICS						
	$(V_{DS} = V_{GS}, I_{D} = 250 \mu Adc)$		V _{GS(th)}				
Company Com	$(V_{GS} = 4.5 \text{ Vdc}, I_D = 4.2 \text{ Adc})$ $(V_{GS} = 2.7 \text{ Vdc}, I_D = 2.1 \text{ Adc})$	Resistance	R _{DS(on)}	- - -	0.035		Ω
			9FS	_	10	-	Mhos
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS			_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance		C _{iss}	-	870	1200	pF
SWITCHING CHARACTERISTICS (Notes 6 & 7)	Output Capacitance		C _{oss}	-	260	400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	,	C _{rss}	-	60	100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS	(Notes 6 & 7)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}	-	13	25	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		t _r	_	35	65	
	Turn-Off Delay Time		t _{d(off)}	-	45	75	
	Fall Time		t _f	-	50	90	
	Total Gate Charge	(Vpc = 12 Vdc	Q _{tot}	-	11	16	nC
	Gate-Source Charge	$V_{GS} = 4.5 \text{ Vdc},$	Q _{gs}	-	2.0	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	$I_{D} = 4.2 \text{ Adc})$	Q _{gd}	-	3.0	-	
	BODY-DRAIN DIODE RATINGS (N	Note 6)					
	Diode Forward On-Voltage	$(I_S = 4.2 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 4.2 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}				Vdc
$\frac{dI_{S}/dt = 100 \text{ A/}\mu\text{s})}{t_{b}} - \frac{12}{8.0} - \frac{1}{8.0}$	Reverse Recovery Time		t _{rr}	_	20	_	ns
t _b – 8.0 –			t _a	_	12	_	
Reverse Recovery Stored Charge $ Q_{RR} - 0.01 - \mu C $			t _b	_	8.0	_	
	Reverse Recovery Stored Charge		Q_{RR}	_	0.01	_	μС

- Handling precautions to protect against electrostatic discharge is mandatory.
 Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperature.

NTMS4N01R2

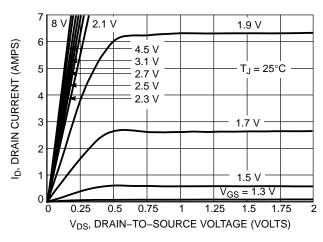


Figure 1. On-Region Characteristics

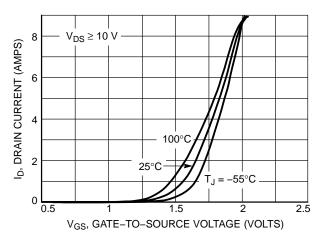


Figure 2. Transfer Characteristics

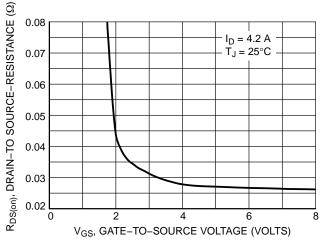


Figure 3. On-Resistance versus Gate-To-Source Voltage

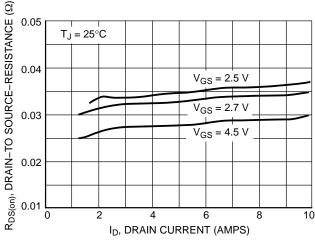


Figure 4. On-Resistance versus Drain Current and Gate Voltage

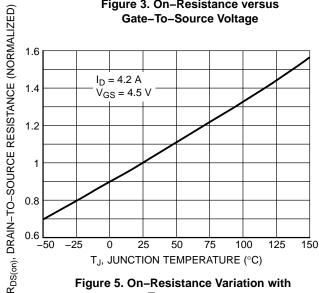


Figure 5. On-Resistance Variation with Temperature

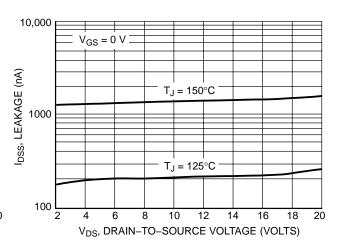
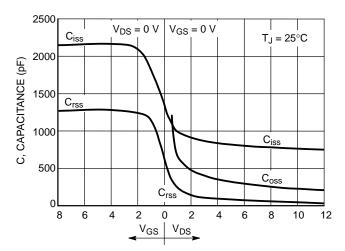



Figure 6. Drain-To-Source Leakage Current versus Voltage

Datasheet of NTMS4N01R2G - MOSFET N-CH 20V 3.3A 8-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4N01R2

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

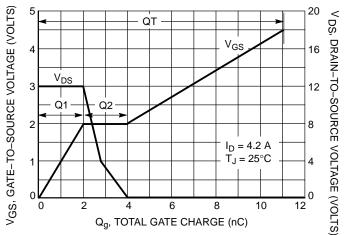


Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

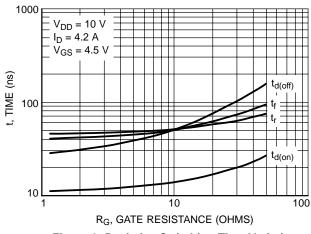


Figure 9. Resistive Switching Time Variation versus Gate Resistance

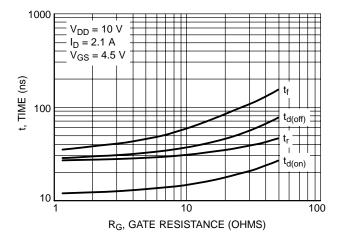


Figure 10. Resistive Switching Time Variation versus Gate Resistance

NTMS4N01R2

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

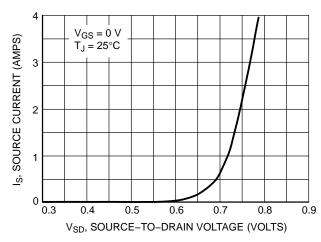


Figure 11. Diode Forward Voltage versus Current

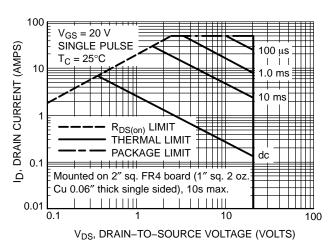


Figure 12. Maximum Rated Forward Biased Safe Operating Area

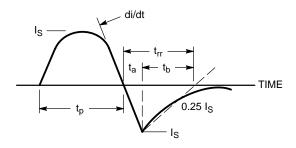


Figure 13. Diode Reverse Recovery Waveform

TYPICAL ELECTRICAL CHARACTERISTICS

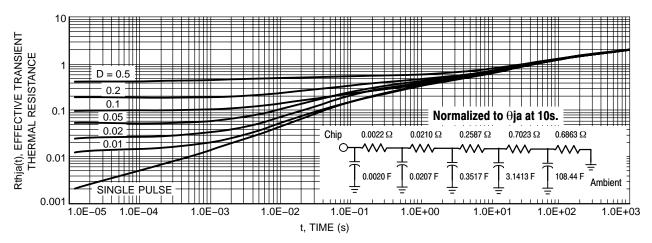
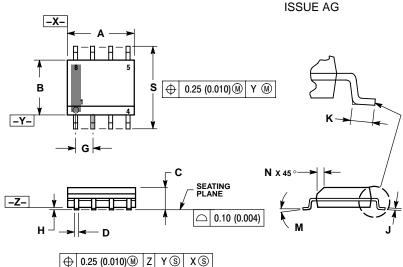


Figure 14. Thermal Response

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of NTMS4N01R2G - MOSFET N-CH 20V 3.3A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4N01R2

PACKAGE DIMENSIONS

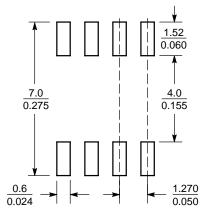
SOIC-8 NB CASE 751-07

NOTES

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE
 MOLD PROTRUSION.


- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
U	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Η	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0	8 °	0 °	°
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

STYLE 13:

- PIN 1.
 - SOURCE 2. 3. 4. SOURCE
 - GATE
 - DRAIN
 - DRAIN
 - DRAIN

SOLDERING FOOTPRINT*

SCALE 6:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was regarded the design or manufacture of the part. SCILLC is an Egual associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative