

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74LVX161284AMTD

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

June 1999 Revised July 2000

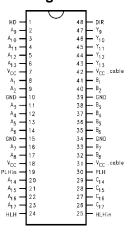
74LVX161284A Low Voltage IEEE 161284 Translating Transceiver

General Description

The LVX161284A contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE 1284 compliant interface. The device supports the IEEE 1284 standard, with the exception of output slew rate, and is intended to be used in an Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

Outputs on the cable side can be configured to be either open drain or high drive (\pm 14 mA) and are connected to a separate power supply pin (V_{CC}—cable) to allow these outputs to be driven by a higher supply voltage than the A-side. The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, all inputs (except HLH) and outputs on the cable side contain internal pull-up resistors connected to the V_{CC} —cable supply to provide proper termination and pull-ups for open drain mode.

Outputs on the Peripheral side are standard low-drive CMOS outputs designed to interface with 3V logic. The DIR input controls data flow on the A1-A8/B1-B8 transceiver pins

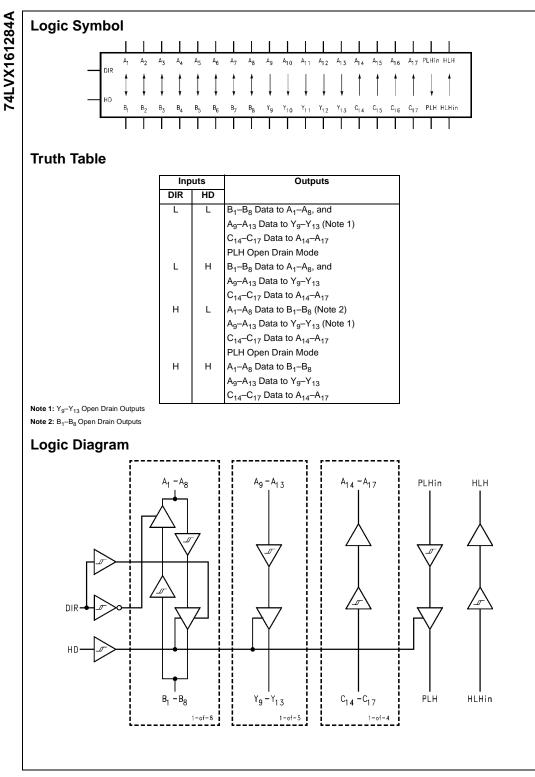

Features

- Supports IEEE 1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals with the exception of output slew rate
- Translation capability allows outputs on the cable side to interface with 5V signals
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- Inputs and outputs on cable side have internal pull-up resistors
- Flow-through pin configuration allows easy interface between the "Peripheral and Host"
- Replaces the function of two (2) 74ACT1284 devices

Ordering Code

Order Number	Package Number	Package Description			
74LVX161284AMTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					
Device also available in Ta	Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.				

Connection Diagram



Pin Descriptions

Pin Names	Description
HD	High Drive Enable Input (Active HIGH)
DIR	Direction Control Input
A ₁ -A ₈	Inputs or Outputs
B ₁ –B ₈	Inputs or Outputs
A ₉ -A ₁₃	Inputs
Y ₉ -Y ₁₃	Outputs
A ₁₄ -A ₁₇	Outputs
C ₁₄ -C ₁₇	Inputs
PLHIN	Peripheral Logic HIGH Input
PLH	Peripheral Logic HIGH Output
HLH _{IN}	Host Logic HIGH Input
HLH	Host Logic HIGH Output
	•

www.fairchildsemi.com

Absolute Maximum Ratings(Note 3)		Recommended Operating Conditions		
Supply Voltage				
V _{CC}	-0.5V to +4.6V	Supply Voltage		
V _{CC—Cable}	-0.5V to +7.0V	V _{CC}	3.0V to 3.6V	
$V_{CC-Cable}$ Must Be $\geq V_{CC}$		V _{CC} —Cable	3.0V to 5.5V	
Input Voltage (V _I)—(Note 4)		DC Input Voltage (V _I)	0V to V _{CC}	
A ₁ –A ₁₃ , PLH _{IN} , DIR, HD	–0.5V to $V_{CC}^{} + 0.5V$	Open Drain Voltage (V _O)	0V to 5.5V	
B ₁ –B ₈ , C ₁₄ –C ₁₇ , HLH _{IN}	-0.5V to +5.5V (DC)	Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$	
B ₁ -B ₈ , C ₁₄ -C ₁₇ , HLH _{IN}	-2.0V to +7.0V*			
	*40 ns Transient			
Output Voltage (V _O)				
A ₁ –A ₈ , A ₁₄ –A ₁₇ , HLH	–0.5V to V_{CC} +0.5V			
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-0.5V to +5.5V (DC)			
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-2.0V to +7.0V*			
	*40 ns Transient			
DC Output Current (I _O)				
A ₁ –A ₈ , HLH	±25 mA			
B ₁ -B ₈ , Y ₉ -Y ₁₃	±50 mA			
PLH (Output LOW)	84 mA			
PLH (Output HIGH)	–50 mA			
Input Diode Current (I _{IK})—(Note 4) DIR, HD, A ₉ –A ₁₃ , PLH, HLH, C ₁₄ –C ₁₇	–20 mA			
Output Diode Current (I _{OK})				
A ₁ -A ₈ , A ₁₄ -A ₁₇ , HLH	±50 mA	Note 3: Absolute Maximum continuous ratings are	those values beyond	
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	–50 mA	which damage to the device may occur. Exposure	to these conditions or	
DC Continuous V _{CC} or Ground Current	±200 mA	conditions beyond those indicated may adversely Functional operation under absolute maximum ra		
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$	implied.		
ESD (HBM) Last Passing Voltage	2000V	Note 4: Either voltage limit or current limit is sufficient	nt to protect inputs.	

DC Electrical Characteristics

Symbol	Parameter		V _{CC} (V)	V _{CC—Cable} (V)	$T_A = -40^{\circ}C$ to $+85^{\circ}C$ Guaranteed Limits	Units	Conditions	
V _{IK}	Input Clamp Diode Voltage		3.0	3.0	-1.2	V	I _i =-18 mA	
V _{IH}	Minimum	A _n , B _n , PLH _{IN} , DIR, HD	3.0–3.6	3.0-5.5	2.0			
	HIGH Level	C _n	3.0-3.6	3.0-5.5	2.3	V		
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	2.6			
V _{IL}	Maximum	A _n , B _n , PLH _{IN} , DIR, HD	3.0-3.6	3.0-5.5	0.8			
	LOW Level	C _n	3.0-3.6	3.0-5.5	0.8	V		
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	1.6			
ΔV_T	Minimum Input	A _n , B _n , PLH _{IN} , DIR, HD	3.3	5.0	0.4		V _T ⁺ –V _T ⁻	
	Hysteresis	C _n	3.3	5.0	0.8	V	$V_{T}^{+} - V_{T}^{-}$	
		HLH _{IN}	3.3	5.0	0.2		$V_{T}^{+}-V_{T}^{-}$	
V _{OH}	Minimum HIGH	A _n , HLH	3.0	3.0	2.8		I _{OH} = -50 μA	
	Level Output		3.0	3.0	2.4		$I_{OH} = -4 \text{ mA}$	
	Voltage	B _n , Y _n	3.0	3.0	2.0	V	I _{OH} = -14 mA	
		B _n , Y _n	3.0	4.5	2.23		$I_{OH} = -14 \text{ mA}$	
		PLH	3.15	3.15	3.1		I _{OH} = -500 μA	

www.fairchildsemi.com

74LVX161284A

	Symbol			V _{CC}	Voo orkin	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Para	ameter				Units	Conditions
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Voi	Maximum LOW	An, HLH					loi = 50 µA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- OL					-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			B _n , Y _n					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0		3.0	4.5	0.77	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3.0	3.0	0.95		I _{OL} = 84 mA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			PLH	3.0	4.5	0.9		I _{OL} = 84 mA
$ \begin{array}{ c c c c c c c } \hline mpedance & 3.3 & 5.0 & 55 & \\ \hline Minimum Output & B_1-B_8, Y_9-Y_{13} & 3.3 & 3.3 & 3.0 & \\ \hline Maximum Pull-Up & B_1-B_8, Y_9-Y_{13} & 3.3 & 3.3 & 3.0 & \\ \hline Resistance & C_{14}-C_{17} & 3.3 & 5.0 & 1160 & \\ \hline Resistance & C_{14}-C_{17} & 3.3 & 5.0 & 1150 & \\ \hline Resistance & C_{14}-C_{17} & 3.3 & 5.0 & 1150 & \\ \hline Minimum Pull-Up & B_1-B_8, Y_9-Y_{13} & 3.3 & 3.3 & 1150 & \\ \hline Resistance & C_{14}-C_{17} & 3.3 & 5.0 & 1150 & \\ \hline Minimum Pull-Up & B_1-B_8, Y_9-Y_{13} & 3.3 & 3.3 & 1150 & \\ \hline Resistance & C_{14}-C_{17} & 3.6 & 3.6 & 1.0 & \\ \hline Minimum Pull-Up & C_{14}-C_{17} & 3.6 & 3.6 & 5.5 & 100 & \\ \hline Hi H & Maximum Input & A_{9}-A_{13}, PLH_{N} & \\ \hline Current in & \\ H O, DIR, HLH_{IN} & 3.6 & 3.6 & -1.0 & \\ \hline L & C_{14}-C_{17} & 3.6 & 5.5 & 100 & \\ \hline I_{1L} & Maximum Output & A_{9}-A_{13}, PLH_{N} & \\ \hline L & Current in & \\ \hline L & Current in & \\ \hline HO, DIR, HLH_{IN} & 3.6 & 3.6 & -1.0 & \\ \hline H & D, R, HLH_{IN} & 3.6 & 3.6 & -3.5 & \\ \hline I_{02H} & Maximum Output & \\ \hline D_{13able Current in & \\ \hline H_{0, DIR, HLH_{IN} & 3.6 & 3.6 & -3.5 & \\ \hline I_{02H} & Maximum Output & \\ \hline D_{102H} & B_{1}-B_{8} & 3.6 & 3.6 & 5.5 & 100 & \\ \hline I_{02F} & C_{14}-C_{17} & 3.6 & 5.5 & -5.0 & \\ \hline I_{02F} & Power Down & \\ \hline I_{0FF} & Power Down & \\ \hline I_{0FF} & Power Down & \\ \hline I_{0FF-ICC2} & Power Down Leakage & \\ \hline I_{0FF-$	R _D	Maximum Output	B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3	3.3	60		-
	5	Impedance	1 0 0 10	3.3	5.0	55	_	(Note 5)(Note 7
$ \begin{array}{ $		Minimum Output	B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3	3.3	30	Ω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Impedance		3.3	5.0	35		(Note 5)(Note 7
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R _P	Maximum Pull-Up	B ₁ -B ₈ , Y ₉ -Y _{13,}	3.3	3.3	1650		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Resistance	C ₁₄ -C ₁₇	3.3	5.0	1650	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Minimum Pull-Up	B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3	3.3	1150	Ω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Resistance	C ₁₄ -C ₁₇	3.3	5.0	1150		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{IH}	Maximum Input	A ₉ –A ₁₃ , PLH _{IN} ,	2.6	2.6	1.0		V _I = 3.6V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Current in	HD, DIR, HLH _{IN}	3.0	3.0	1.0		
$ \begin{array}{ c c c c c c c c c } \hline I_{IL} & Maximum Input \\ Current in \\ LOW State & \hline \\ \hline \\ I_{OZH} & Maximum Output \\ HIGH & \hline \\ \hline \\ I_{OZL} & Maximum Output \\ HIGH & \hline \\ \hline \\ I_{OZL} & Maximum Output \\ HIGH & \hline \\ \hline \\ I_{OZL} & Maximum Output \\ HIGH & \hline \\ \hline \\ I_{OZL} & Maximum Output \\ I_{OZL} & Maximum Output \\ HIGH & \hline \\ \hline \\ \hline \\ I_{OZL} & Maximum Output \\ I_{OZL} & Maximum \\ Output Disable \\ Current (LOW) & \hline \\ \hline \\ I_{OFF} & Power Down \\ Output Leakage & PLH & \hline \\ I_{OFF} & Power Down \\ I_{OFF-IICC} & PowerDown \\ Leakage to V_{CC} & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline \\ I_{OFF-IICC2} & Power Down Leakage & \hline \\ \hline$		HIGH State	C ₁₄ -C ₁₇	3.6	3.6	50.0	μΑ	$V_I = 3.6V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			C ₁₄ -C ₁₇	3.6	5.5	100		$V_I = 5.5V$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IIL	Maximum Input	A ₉ –A ₁₃ , PLH _{IN} ,	2.6	2.6	1.0		V = 0.0V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Current in	HD, DIR, HLH _{IN}	5.0	5.0	-1.0	μΑ	v] = 0.0v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LOW State	C ₁₄ -C ₁₇	3.6	3.6	-3.5	mA	$V_I = 0.0V$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			C ₁₄ -C ₁₇	3.6	5.5	-5.0	mA	-
$ \begin{array}{ c c c c c c c c } \hline (HIGH) & \hline B_1 - B_8 & 3.6 & 5.5 & 100 & \mu A & V_0 = 5.5V \\ \hline I_{OZL} & Maximum & A_1 - A_8 & 3.6 & 3.6 & -20 & \mu A \\ Output Disable & \hline B_1 - B_8 & 3.6 & 3.6 & -3.5 & mA \\ Current (LOW) & \hline B_1 - B_8 & 3.6 & 5.5 & -5.0 & mA \\ \hline I_{OFF} & Power Down & B_1 - B_8, Y_9 - Y_{13}, \\ Output Leakage & PLH & 0.0 & 0.0 & 100 & \mu A & V_0 = 5.5V \\ \hline I_{OFF} & Power Down & C_{14} - C_{17}, HLH_{IN} & 0.0 & 0.0 & 100 & \mu A & V_1 = 5.5V \\ \hline I_{OFF} & Power Down & C_{14} - C_{17}, HLH_{IN} & 0.0 & 0.0 & 0.0 & 100 & \mu A & V_1 = 5.5V \\ \hline I_{OFF} - I_{DefF-ICC} & Power Down & C_{14} - C_{17}, HLH_{IN} & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_{OFF-ICC} & Power Down & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_{OFF-ICC2} & Power Down Leakage & 0.0 $	I _{OZH}	Maximum Output	A ₁ -A ₈	3.6	3.6	20	μA	V _O = 3.6V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Disable Current	B ₁ -B ₈	3.6	3.6	50	μA	$V_{O} = 3.6V$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(HIGH)	B ₁ -B ₈	3.6	5.5	100	μA	$V_{O} = 5.5V$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	I _{OZL}		A ₁ -A ₈				•	$V_{0} = 0.0V$
			B ₁ –B ₈					
Output Leakage PLH 0.0 0.0 100 μA $V_0 = 5.5V$ IoFF Power Down Input Leakage $C_{14}-C_{17}$, HLH _{IN} 0.0 0.0 100 μA $V_1 = 5.5V$ IoFF Power Down Leakage 0.0 0.0 0.0 100 μA $V_1 = 5.5V$ IoFF-ICC Power Down Leakage to V_{CC} 0.0 0.0 250 μA (Note 6) IoFF-ICC2 Power Down Leakage 0.0 0.0 250 μA (Note 6)		Current (LOW)		3.6	5.5	-5.0	mA	
Output Leakage PLH	IOFF			0.0	0.0	100	μA	$V_{0} = 5.5V$
Input Leakage C14-C17, HLHIN 0.0 0.0 100 μA $V_1 = 5.5V$ IoFF-ICC PowerDown 0.0 0.0 0.0 250 μA (Note 6) IoFF-ICC2 Power Down Leakage 0.0 0.0 250 μA (Note 6)			PLH				per s	.0
Input Leakage 0.0 0.0 250 μA (Note 6) IoFF-ICC2 Power Down Leakage to V _{CC} 0.0 0.0 250 μA (Note 6)	I _{OFF}		C14-C17, HLHIN	0.0	0.0	100	μA	Vi = 5.5V
Or in IoO Leakage to V _{CC} 0.0 0.0 0.0 250 μA (Note 6) IoFF-ICC2 Power Down Leakage 0.0 0.0 250 μA (Note 6)							P	
Leakage to V _{CC} Power Down Leakage 0.0 0.0 250 µA (Note 6)	IOFF-ICC			0.0	0.0	250	μA	(Note 6)
0.0 0.0 250 µA (Note 6)							P	,
	IOFF-ICC2	-		0.0	0.0	250	μA	(Note 6)
		to V _{CC-Cable}					•	$V_{I} = V_{CC}$ or GNI

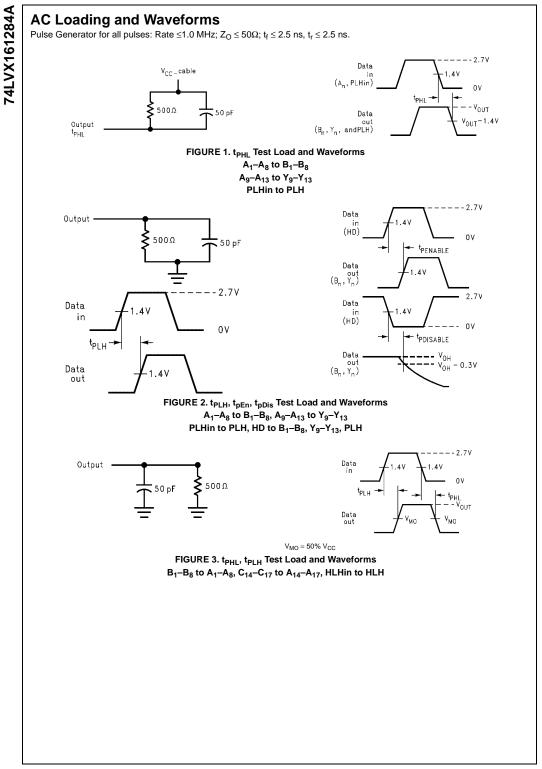
Note 5: Output impedance is measured with the output active LOW and active HIGH (HD = HIGH).

Note 6: Power-down leakage to V_{CC} or $V_{CC-Cable}$ is tested by simultaneously forcing all pins on the cable-side (B₁-B₈, Y₉-Y₁₃, PLH, C₁₄-C₁₇ and HLH_{IN}) to 5.5V and measuring the resulting I_{CC} or I_{CC-Cable}.

Note 7: This parameter is guaranteed but not tested, characterized only.

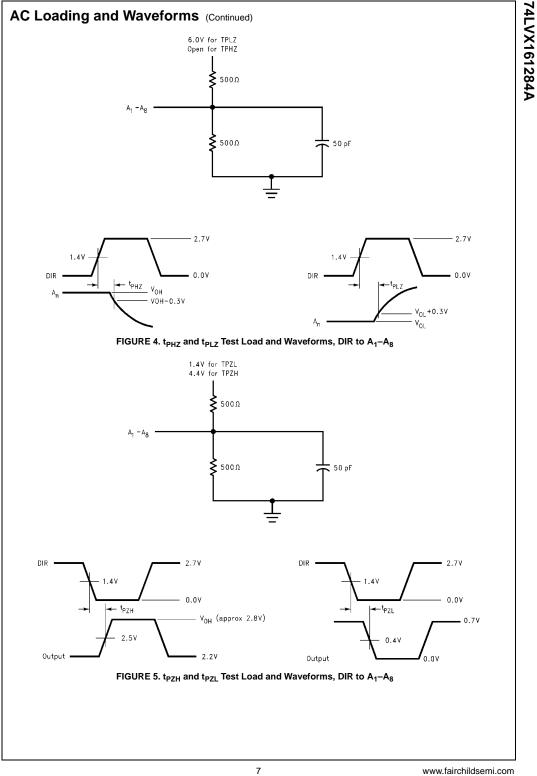
		T _A = -40°0	C to + 85°C		
Symbol	Parameter	V _{CC} = 3.	0V–3.6V	Units	Figure
Symbol	Farameter	V _{CC-Cable}	Units	Number	
		Min	Max	-	
t _{PHL}	A ₁ -A ₈ to B ₁ -B ₈	1.0	8.5	ns	Figure 1
t _{PLH}	A ₁ -A ₈ to B ₁ -B ₈	1.0	8.5	ns	Figure 2
t _{PHL}	B ₁ –B ₈ to A ₁ –A ₈	1.0	14.0	ns	Figure 3
t _{PLH}	B ₁ –B ₈ to A ₁ –A ₈	1.0	14.0	ns	Figure 3
t _{PHL}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	1.0	8.5	ns	Figure 1
t _{PLH}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	1.0	8.5	ns	Figure 2
t _{PHL}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	1.0	10.0	ns	Figure 3
t _{PLH}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	1.0	10.0	ns	Figure 3
t _{SKEW}	LH-LH or HL-HL		2.0	ns	(Note 8)
t _{PHL}	PLH _{IN} to PLH	1.0	8.5	ns	Figure 1
t _{PLH}	PLH _{IN} to PLH	1.0	8.5	ns	Figure 2
t _{PHL}	HLH _{IN} to HLH	1.0	10.0	ns	Figure 3
t _{PLH}	HLH _{IN} to HLH	1.0	12.0	ns	Figure 3
t _{PHZ}	Output Disable Time	1.0	10.0	ns	Figure 4
t _{PLZ}	DIR to A ₁ -A ₈	1.0	10.0	115	r igure 4
t _{PZH}	Output Enable Time	1.0	10.0	ns	Figure 5
t _{PZL}	DIR to A ₁ -A ₈	1.0	10.0	113	r igure o
t _{PHZ}	Output Disable Time	1.0	13.0	ns	Figure 6
t _{PLZ}	DIR to B ₁ -B ₈	1.0	10.0	115	i igule o
t _{pEN}	Output Enable Time	1.0	8.0	ns	Figure 2
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	1.0	8.0	115	r igure z
t _{pDIS}	Output Disable Time	1.0	12.0	20	Figure 2
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	1.0	12.0	ns	Figure 2

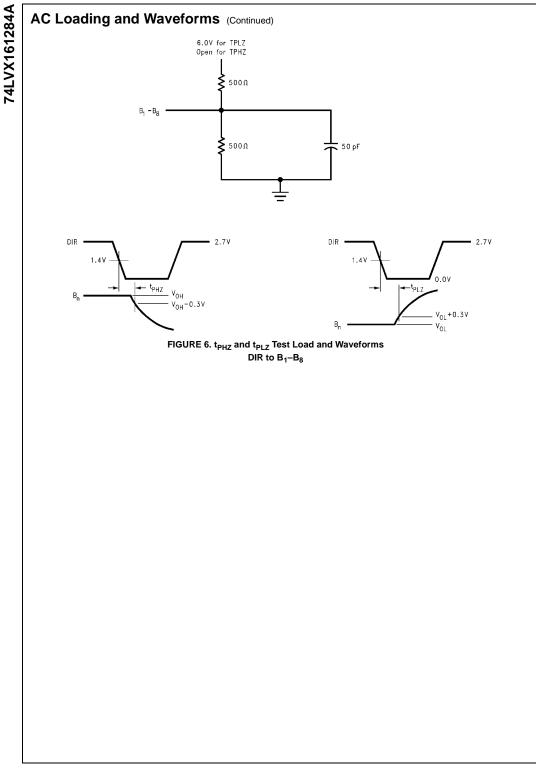
(ii) $B_1 - B_8$ to $A_1 - A_8$

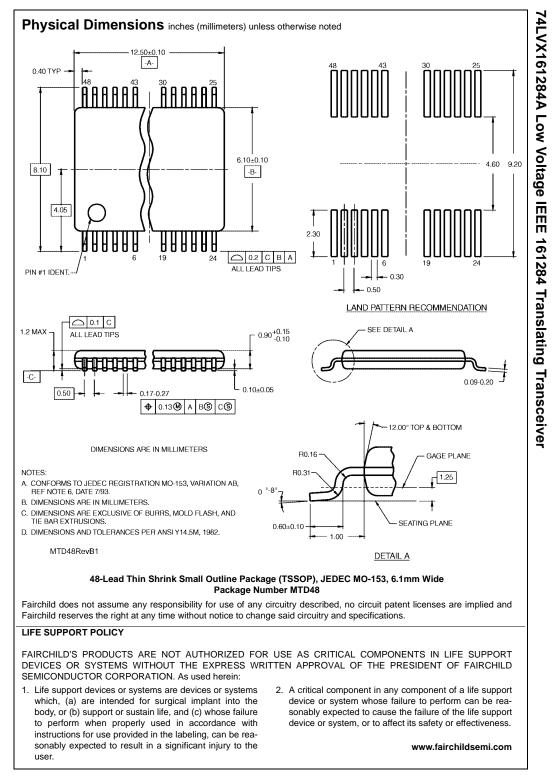

(iii) C₁₄-C₁₇ to A₁₄-A₁₇

Capacitance

Parameter	Тур	Units	Conditions			
put Capacitance	3	pF	$V_{CC} = 0.0V$ (HD, DIR, A ₉ -A ₁₃ , C ₁₄ -C ₁₇ , PLH _{IN} and HLH _{IN})			
C _{L/O} (Note 9) I/O Pin Capacitance 5 pF V _{CC} = 3.3V						
C		Dut Capacitance 3 D Pin Capacitance 5	put Capacitance 3 pF			


1 MHz, per MIL-STD-883B, Method 3012


www.fairchildsemi.com


7

www.fairchildsemi.com

