Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDN308P

For any questions, you can email us directly: sales@integrated-circuit.com

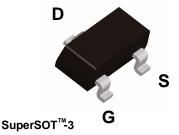
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

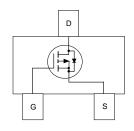
February 2001

FDN308P

P-Channel 2.5V Specified PowerTrench® MOSFET

General Description


This P-Channel 2.5V specified MOSFET uses a rugged gate version of Fairchild's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).


Applications

- Power management
- Load switch
- · Battery protection

Features

- -20 V, -1.5 A. $R_{DS(ON)} = 125 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 190 \text{ m}\Omega$ @ $V_{GS} = -2.5 \text{ V}$
- · Fast switching speed
- High performance trench technology for extremely low $R_{DS(ON)}$
- SuperSOTTM -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Drain Current - Continuous	(Note 1a)	-1.5	A
	– Pulsed		-10	
В	Maximum Power Dissipation	(Note 1a)	0.5	W
P_D		(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Junction Tem	perature Range	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
R _{e,IC}	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity	
308	FDN308P	7"	8mm	3000 units	

©2001 Fairchild Semiconductor Corporation

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Electrical Characteristics T_A = 25°C unless otherwise noted **Parameter** Symbol **Test Conditions** Min Typ Max Units Off Characteristics $V_{GS} = 0 \text{ V}, I_{D} = -250 \,\mu\text{A}$ $\mathsf{BV}_{\mathsf{DSS}}$ Drain-Source Breakdown Voltage -20 ٧ Breakdown Voltage Temperature ΔBV_{DSS} $I_D = -250 \mu A$, Referenced to 25°C -13 mV/°C Coefficient ΔT_J $V_{DS} = -16 V$ I_{DSS} $V_{GS} = 0 V$ Zero Gate Voltage Drain Current μΑ $V_{DS} = 0 \overline{V}$ Gate-Body Leakage, Forward $V_{GS} = 12 V$, 100 I_{GSSF} nΑ Gate-Body Leakage, Reverse $V_{GS} = -12 \text{ V}$ $V_{DS} = 0 V$ -100 I_{GSSR} nΑ On Characteristics (Note 2) $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ -0.6 -1.0-1.5V Gate Threshold Voltage $\Delta V_{GS(th)}$ $I_D = -250 \,\mu\text{A}$, Referenced to 25°C 3 mV/°C Temperature Coefficient ΔT_{J} R_{DS(on)} Static Drain-Source $V_{GS} = -4.5 \text{ V}$ $I_D = -1.5 A$ 86 125 mΩ On-Resistance $V_{GS} = -2.5 \text{ V},$ $I_D = -1.3 A$ 136 190 $V_{GS} = -4.5 \text{ V}, I_D = -1.5 \text{A T}_J = 125^{\circ}\text{C}$ 114 178 On-State Drain Current $V_{GS} = \overline{-4.5 \text{ V}}$ $V_{DS} = -5 V$ -5 Α $I_{D(on)}$ $V_{DS} = -\overline{5} V$ $I_D = -1.5 A$ Forward Transconductance 12 S g_{FS} **Dynamic Characteristics** Input Capacitance 341 рF C_{iss} $V_{DS} = -10 \text{ V},$ $V_{GS} = 0 V$, Coss Output Capacitance f = 1.0 MHz 83 рF C_{rss} Reverse Transfer Capacitance 43 pF Turn-On Delay Time 8 16 $t_{d(on)}$ $V_{DD} = -10 \text{ V}.$ $I_D = -1 A$. ns $V_{GS} = -4.5 \text{ V},$ $R_{GEN} = 6 \Omega$ Turn-On Rise Time 20 $t_{\text{r}} \\$ 10 ns $t_{d(off)}$ Turn-Off Delay Time 12 22 ns

Is	Maximum Continuous Drain-Source	Diode Forwa	ard Current			-0.42	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$,	$I_S = -0.42$	(Note 2)	-0.7	-1.2	V

 $V_{DS} = -10V$,

 $V_{GS} = -4.5 \text{ V}$

Notes:

 t_f

 Q_g

 Q_{gs}

 Q_{gd}

 R_{B,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{B,JC} is guaranteed by design while R_{BCA} is determined by the user's board design.

a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.

 $I_D = -1.5 A$,

8

3.8

8.0

1.0

16

5.4

ns

nC

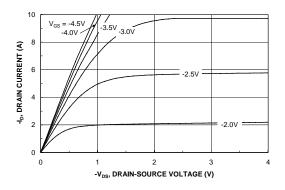
nC

nC

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Turn-Off Fall Time


Total Gate Charge

Gate-Source Charge

Gate-Drain Charge

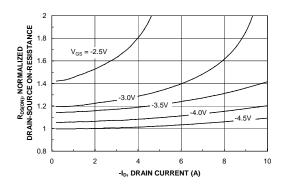
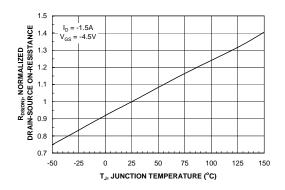



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

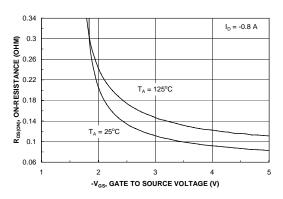
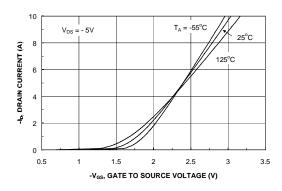



Figure 3. On-Resistance Variation withTemperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

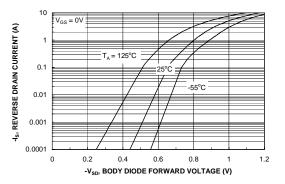
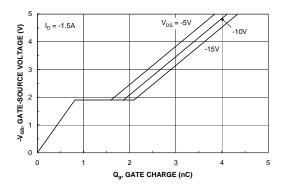



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

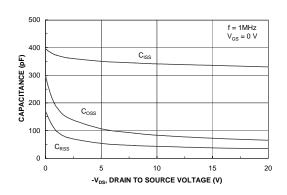


Figure 7. Gate Charge Characteristics.

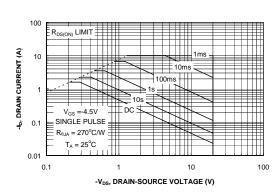


Figure 8. Capacitance Characteristics.

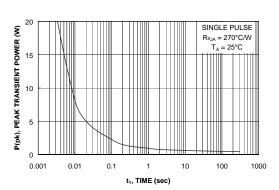


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

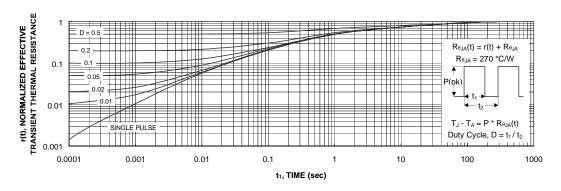


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient themal response will change depending on the circuit board design.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDN308P - MOSFET P-CH 20V 1.5A SSOT-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SyncFET™ $ACEx^{TM}$ FASTr™ PowerTrench® TinyLogic™ **QFET™** Bottomless™ GlobalOptoisolator™ QSTM UHC™ $\mathsf{G}\mathsf{T}\mathsf{O}^{\mathsf{TM}}$ CoolFET™ **VCX**TM QT Optoelectronics™ $CROSSVOLT^{TM}$ HiSeC™ DOME™ ISOPLANAR™ Quiet Series™ E²CMOSTM MICROWIRE™ SILENT SWITCHER®

EnSignaTM OPTOLOGICTM SMART STARTTM
FACTTM OPTOPLANARTM SuperSOTTM-3
FACT Quiet SeriesTM PACMANTM SuperSOTTM-6
FAST ® POPTM SuperSOTTM-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. G