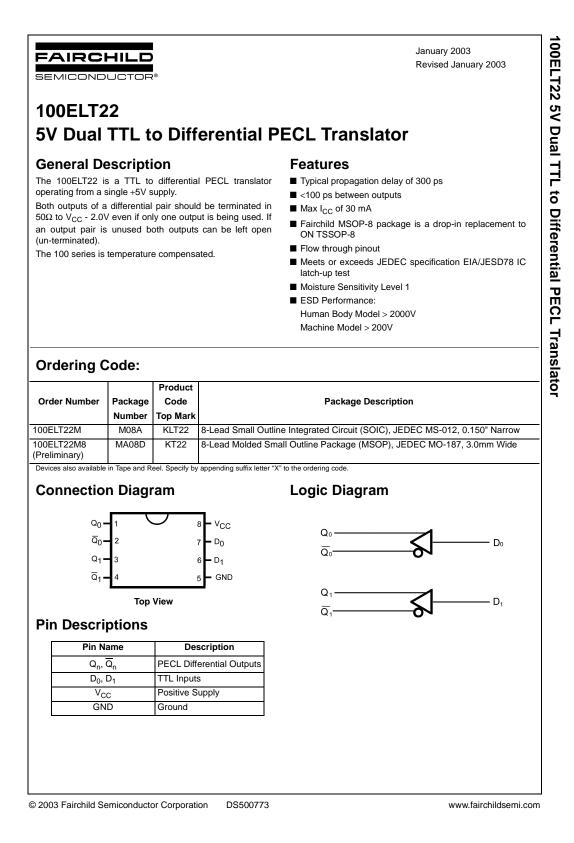


## **Excellent Integrated System Limited**


Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 100ELT22M

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>







**Distributor of Fairchild Semiconductor: Excellent Integrated System Limited** Datasheet of 100ELT22M - TRANSLATOR TTL-DIFF PECL 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

100ELT22

### Absolute Maximum Ratings(Note 1)

| Supply Voltage (V <sub>CC</sub> )                | 0.0V to +7.0V               |
|--------------------------------------------------|-----------------------------|
| Input Voltage (V <sub>I</sub> ) $V_I \le V_{CC}$ | 0.0V to + 7.0V              |
| DC Output Current (I <sub>OUT</sub> )            |                             |
| Continuous                                       | 50 mA                       |
| Surge                                            | 100 mA                      |
| Storage Temperature (T <sub>STG</sub> )          | $-65^{\circ}C$ to $+$ 150°C |
|                                                  |                             |

# Recommended Operating Conditions

| Power Supply Operating                 | $V_{CC} = 4.2V$ to 5.5V          |
|----------------------------------------|----------------------------------|
| TTL Input Voltage                      | 0.0V to $V_{CC}$                 |
| Free Air Operating Temperature $(T_A)$ | $-40^{\circ}C$ to $+85^{\circ}C$ |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **PECL DC Electrical Characteristics** $V_{CC} = 5.0V$ ; GND = 0.0V (Note 2)

| Symbol          | Parameter                    | -40°C |      |      | 25°C |      |      | 85°C |      |      | Units |
|-----------------|------------------------------|-------|------|------|------|------|------|------|------|------|-------|
|                 |                              | Min   | Тур  | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Units |
| I <sub>CC</sub> | Power Supply Current         |       |      | 30   |      |      | 30   |      |      | 30   | mA    |
| V <sub>OH</sub> | Output HIGH Voltage (Note 3) | 3915  | 3995 | 4120 | 3975 | 4045 | 4120 | 3975 | 4050 | 4120 | mV    |
| V <sub>OL</sub> | Output LOW Voltage (Note 3)  | 3170  | 3305 | 3445 | 3190 | 3295 | 3380 | 3190 | 3295 | 3380 | mV    |

Note 2: Output parameters vary 1 to 1 with V<sub>CC</sub>. V<sub>CC</sub> can vary +0.5V/–0.8V.

Note 3: Outputs are terminated through a  $50\Omega$  Resistor to  $V_{CC}$  – 2.0V.

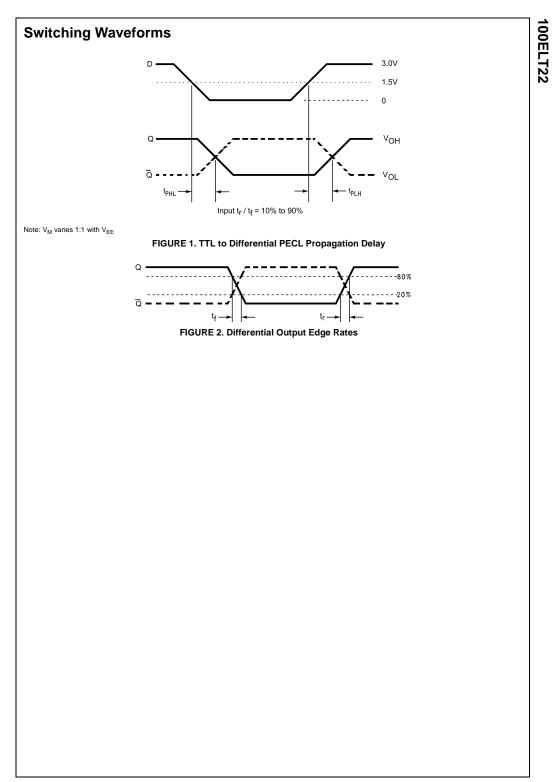
Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

#### TTL DC Electrical Characteristics $V_{CC} = 5.0V$ ; GND = 0.0V (Note 4); $T_A = -40^{\circ}C$ to $+85^{\circ}C$

| Symbol          | Parameter           | Min | Тур | Max  | Units | Condition                |
|-----------------|---------------------|-----|-----|------|-------|--------------------------|
| IIH             | Input HIGH Current  |     |     | 20   |       | V <sub>IN</sub> = 2.7V   |
|                 |                     |     |     | 100  | μA    | $V_{IN} = V_{CC}$        |
| IIL             | Input LOW Current   |     |     | -200 | μΑ    | V <sub>IN</sub> = 0.5V   |
| V <sub>IK</sub> | Clamp Diode Voltage |     |     | -1.2 | V     | I <sub>IN</sub> = -18 mA |
| VIH             | Input HIGH Voltage  | 2.0 |     |      | V     |                          |
| VIL             | Input LOW Voltage   |     |     | 0.8  | V     |                          |

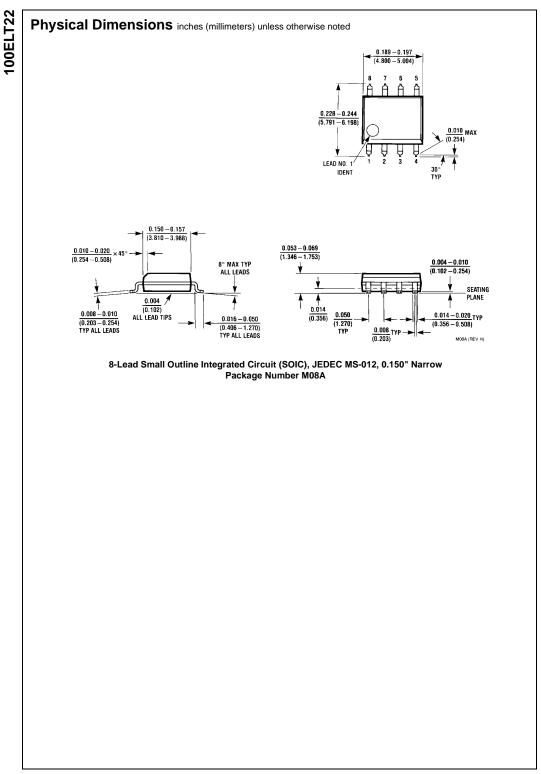
Note 4:  $V_{CC}$  can vary +0.5V/-0.8V.

#### AC Electrical Characteristics $V_{CC} = 5.0V$ ; GND = 0.0V (Note 5)


| Symbol                              | Parameter                                   | <b>−40°C</b> |     | 25°C |     |     | 85°C |     |     | Units | Figure |          |
|-------------------------------------|---------------------------------------------|--------------|-----|------|-----|-----|------|-----|-----|-------|--------|----------|
|                                     |                                             | Min          | Тур | Max  | Min | Тур | Max  | Min | Тур | Max   | Onits  | Number   |
| f <sub>MAX</sub>                    | Maximum Input Frequency                     |              | TBD |      |     | TBD |      |     | TBD |       | MHz    |          |
| t <sub>JITTER</sub>                 | Cycle-to-Cycle Jitter                       |              | TBD |      |     | TBD |      |     | TBD |       | ps     |          |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay to Output (Note 6)        | 100          |     | 600  | 100 |     | 600  | 100 |     | 600   | ps     | Figure 1 |
| t <sub>r</sub> , t <sub>f</sub>     | Output Rise Time/Fall Times<br>(20% to 80%) | 200          |     | 500  | 200 |     | 500  | 200 |     | 500   | ns     | Figure 2 |
| t <sub>skpp</sub>                   | Part to Part Skew                           |              |     | 500  |     |     | 500  |     |     | 500   | ps     |          |
| t <sub>skew</sub>                   | Within Device Skew (Note 7)                 |              |     | 100  |     |     | 100  |     |     | 100   | ps     |          |

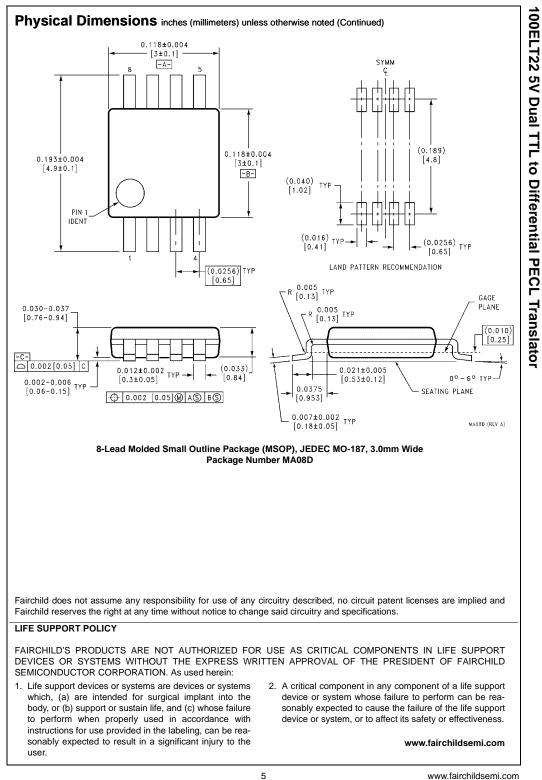
Note 5: V<sub>CC</sub> can vary +0.5V/-0.8V.

Note 6: Specifications for standard TTL input signal (see Figure 1).


Note 7: Within-device skew is defined as identical transitions on similar paths through a device.






www.fairchildsemi.com





www.fairchildsemi.com



