

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74ALVC16500MTD

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74ALVC16500MTD - TXRX 18BIT UNIV BUS 56TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

October 2001 Revised October 2001

74ALVC16500 Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16500 is an 18-bit universal bus transceiver which combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when L<u>EAB is</u> HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB. When OEAB is HIGH, the outputs are in a high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active HIGH and OEBA is active LOW).

The ALVC16500 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74ALVC16500 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

- Features
- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (A to B, B to A) 3.4 ns max for 3.0V to 3.6V V_{CC}
 - 4.0 ns max for 2.3V to 2.7V $\rm V_{CC}$
- 7.0 ns max for 1.65V to 1.95V $\rm V_{CC}$
- Power-off high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78ESD performance:
 - Human body model > 2000V Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OEBA}}$ should be tied to V_{CC} through a pull-up resistor and OEAB should be tied to GND through a pull-down resistors; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74ALVC16500MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available o	n Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

© 2001 Fairchild Semiconductor Corporation DS500684

74ALVC16500

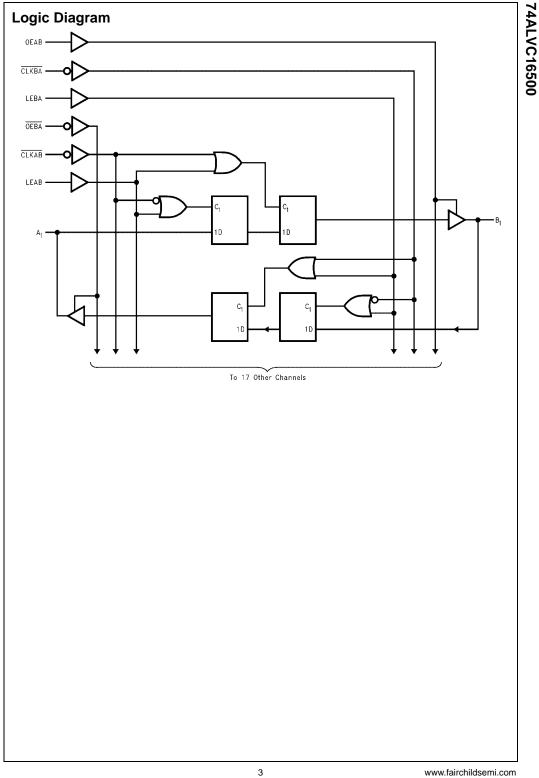
Connection	Diagram		_
OEAB —		56	— GND
LEAB	2	55	- CLKAB
	3	54	
A ₁ — GND —	3	54 53	— B ₁ — GND
	4 5	52	
A2-	6	51	— В ₂
A3-	7	50	-B3
v _{cc} —	8	50 49	−v _{cc}
A4			— В ₄
A ₅ —	9	48	— в ₅
A ₆ -	10	47	— В ₆
GND —	11	46	— GND
A ₇ —	12	45	— В ₇
A ₈ —	13	44	— ^в 8
A ₉ —	14	43	— В ₉
A ₁₀	15	42	— ^в 10
A ₁₁ -	16	41	— В ₁₁
A ₁₂	17	40	— В ₁₂
GND —	18	39	— GND
A ₁₃	19	38	— В ₁₃
A ₁₄ —	20	37	— В ₁₄
A ₁₅	21	36	— В ₁₅
v _{cc} —	22	35	-v _{cc}
A ₁₆	23	34	— ^в 16
A ₁₇ —	24	33	— В ₁₇
GND —	25	32	— GND
A ₁₈ -	26	31	— В ₁₈
OEBA -	27	30	- CLKBA
LEBA —	28	29	— GND

Pin Descriptions

Pin Names	Description
OEAB	Output Enable Input for A to B Direction (Active HIGH)
OEBA	Output Enable Input for B to A Direction (Active LOW)
LEAB, LEBA	Latch Enable Inputs
<u>CLKAB</u> , CLKBA	Clock Inputs
A ₁ -A ₁₈	Side A Inputs or 3-STATE Outputs
B ₁ -B ₁₈	Side B Inputs or 3-STATE Outputs

Function Table (Note 2)

	Inp	outs		Outputs
OEAB	LEAB	CLKAB	A _n	B _n
L	Х	х	Х	Z
н	н	х	L	L
н	н	х	н	н
н	L	\downarrow	L	L
н	L	\downarrow	н	н
н	L	н	х	B ₀ (Note 3)
н	L	L	Х	B ₀ (Note 4)


H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float) Z = High Impedance

Note 2: A-to-B data flow is shown; B-to-A flow is similar but uses $\overline{\text{OEBA}}$, LEBA and $\overline{\text{CLKBA}}$. $\overline{\text{OEBA}}$ is active LOW.

Note 3: Output level before the indicated steady-state input conditions were established.

Note 4: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74ALVC16500MTD - TXRX 18BIT UNIV BUS 56TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 5)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 6)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
$V_{I} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating Conditions (Note 7)

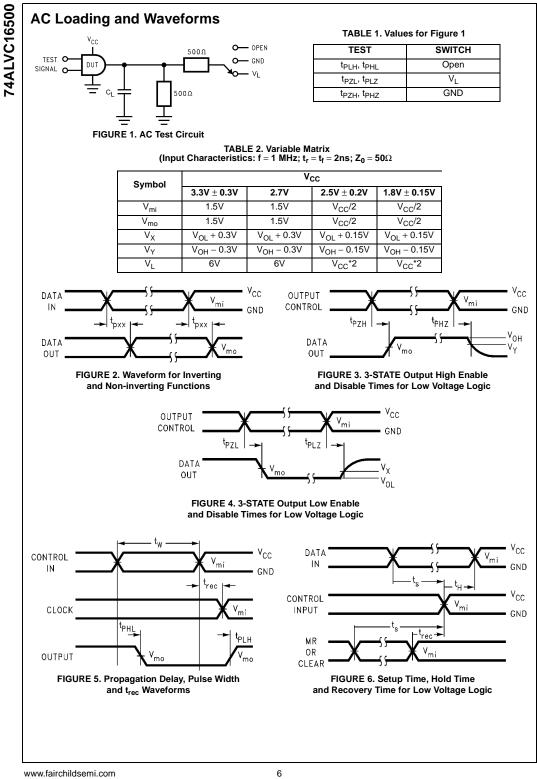
Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	–40°C to +85°C
Minimum Input Edge Rate (Δt/ΔV)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Note 5: The Absolute Maximum Patings are those	a values beyond which

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the condi-tions for actual device operation. tions for actual device operation.

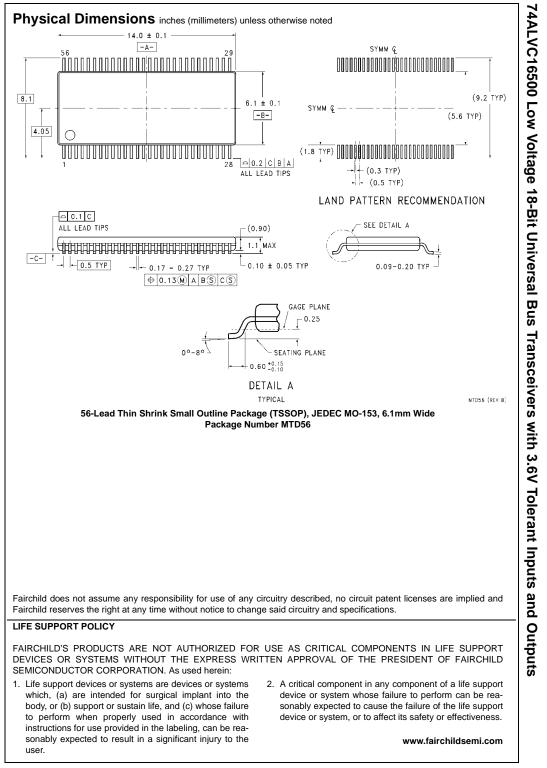
Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics


Symbol	Parameter	Conditions	V _{cc}	Min	Max	Units
			(V)			
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = 100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	v
		$I_{OL} = 12 \text{ mA}$	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
Icc	Quiescent Supply Current	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6		40	μA
	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA

				T _A =	-40°C to +	85°C, R _L =	500 Ω			
			CL=	50 pF			C _L =	30 pF		11
ymbol	Parameter	$V_{CC}=3.3V\pm0.3V$		V _{CC} =	V _{CC} = 2.7V		$5V \pm 0.2V$	V _{CC} =	1.8V ± 0.15V	Units
		Mi	in Max	Min	Max	Min	Max	Min	Max	t
х	Maximum Clock Frequency	25	50	200		200		100)	MHz
, t _{PLH}	Propagation Delay	1.1	.1 3.4	1.3	4.0	0.8	3.5	1.5	7.0	ns
	Bus to Bus	1.	.1 0.4	1.5	4.0	0.0	5.5	1.5	7.0	113
_, t _{PLH}	Propagation Delay	1.1	.1 4.7	1.3	5.8	0.8	5.3	1.5	9.8	ns
	Clock to Bus							_		
L, t _{PLH}	Propagation Delay	1.1	.1 4.3	1.3	5.4	0.8	4.9	1.5	9.8	ns
•	LE to Bus Output Enable Time	1.1	.1 4.3	1.3	5.4	0.8	4.9	1.5	9.8	ns
_, t _{PZH}	Output Enable Time	1.		1.3	4.7	0.8	4.9	1.5		ns
z, t _{PHZ}	Pulse Width	1.		1.5	4.7	1.5	4.2	4.0		ns
	Setup Time	1.5		1.5		1.5		2.5		ns
	Hold Time	1.0		1.0		1.0		1.0		ns
ymbol	Paramet	er			Conditi	ons		T _A = ⊣ V _{CC}	⊦25°C Typical	Units
				14 014						
	Input Capacitance			$V_I = 0V \text{ or } V_{CC}$				3.3	6	pF
	Output Capacitanco			V = 0 V or	M			22	7	ñ
UT	Output Capacitance		utputs Enabled	$V_{I} = 0V \text{ or}$ f = 10 MHz		F		3.3	7	pF
UT D	Output Capacitance Power Dissipation Capacitance	e Oi	Outputs Enabled			۶F		3.3 3.3 2.5	7 20 20	pF
UT		9 0	Outputs Enabled			F		3.3	20	-
JT		9 0	Dutputs Enabled			F		3.3	20	-
JT		9 O	Dutputs Enabled			F		3.3	20	-
JT			Putputs Enabled			F		3.3	20	-
JT		e 01	Putputs Enabled			JF		3.3	20	-
JT			outputs Enabled			ιF		3.3	20	
JT		≥ O	outputs Enabled			ιF		3.3	20	
JT		3 00	outputs Enabled			ιF		3.3	20	-
JT		3 00	outputs Enabled			ιF		3.3	20	-
JT		3 00	butputs Enabled			ιF		3.3	20	-
UT		3 00	butputs Enabled			ιF		3.3	20	-
UT		3 00	butputs Enabled			ιF		3.3	20	-
UT		3 04	Putputs Enabled			ιF		3.3	20	-
JT		э <mark>О</mark>	Putputs Enabled			νF		3.3	20	-
JT		э <mark>О</mark>	Putputs Enabled			ιF		3.3	20	-
JT		э О(Putputs Enabled			ιF		3.3	20	-


74ALVC16500

6

