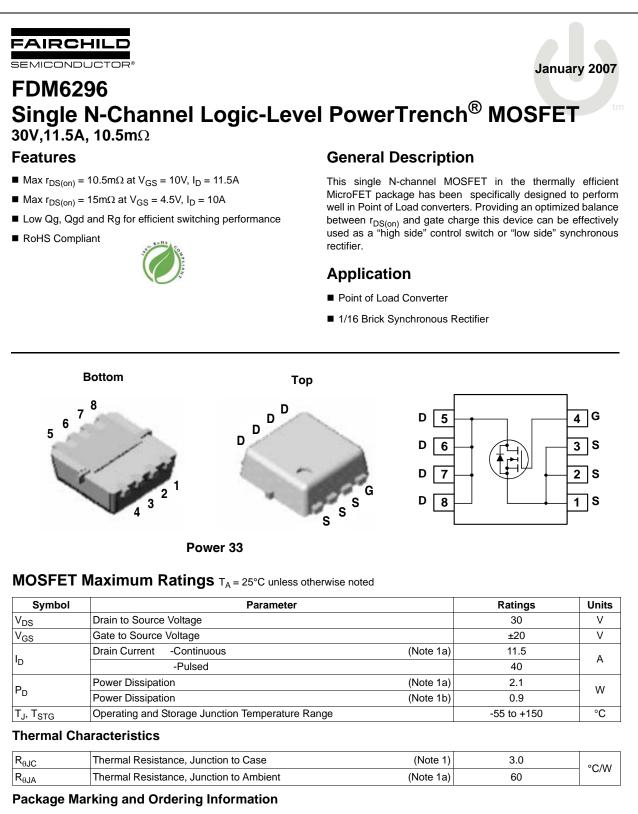


Excellent Integrated System Limited


Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDM6296

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Device Marking	Device	Package	Reel Size	Tape Width Quantit	
6296	FDM6296	Power 33	7"	8mm	3000 units

©2006 Fairchild Semiconductor Corporation FDM6296 Rev.E FDM6296 Single N-Channel Logic-Level PowerTrench $^{ extsf{m}}$ MOSFE1

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	30			V	
ΔΒV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		29		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	1	1.9	3	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-5		mV/°C	
r _{DS(on)} Stati		V _{GS} = 10V, I _D = 11.5A		8.7	10.5		
	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_{D} = 10A$		10.6	15	mΩ	
		$V_{GS} = 10V, I_D = 11.5A, T_J = 125^{\circ}C$		13	17		
9fs	Forward Transconductance	$V_{DS} = 5V, I_{D} = 11.5A$		47		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			1507	2005	pF	
C _{oss}	Output Capacitance	── V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		415	555	pF	
C _{rss}	Reverse Transfer Capacitance			128	170	pF	
Rg	Gate Resistance	V_{DS} = 15mV, f = 1MHz		1.1		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			10	20	ns	
t _r	Rise Time	$V_{DD} = 15V, I_D = 1.0A$		5	10	ns	
t _{d(off)}	Turn-Off Delay Time	$-V_{GS} = 10V, R_{GEN} = 6\Omega$		27	44	ns	
t _f	Fall Time			13	23	ns	
Qg	Total Gate Charge at 5V	$V_{GS} = 5V$		12	17	nC	
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15V		4		nC	
Q _{gd}	Gate to Drain "Miller" Charge			3		nC	
Drain-So	urce Diode Characteristics	• •					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2A$ (Note 2)		0.9	1.2	V	
t _{rr}	Reverse Recovery Time			29		ns	
		— I _F = 11.5A, di/dt = 100A/μs		-		-	

Q_{rr}

Notes:
1: R_{0JA} is determined with the device mounted on a 1 in² oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
(a)R_{0JA} = 60°C/W when mounted on a 1 in² pad of 2 oz copper, 1.5'x1.5'x0.062' thick PCB.
(b)R_{0JA} = 135°C/W when mounted on a minimum pad of 2 oz copper.

 $I_F = 11.5A$, di/dt = 100A/µs

Reverse Recovery Charge

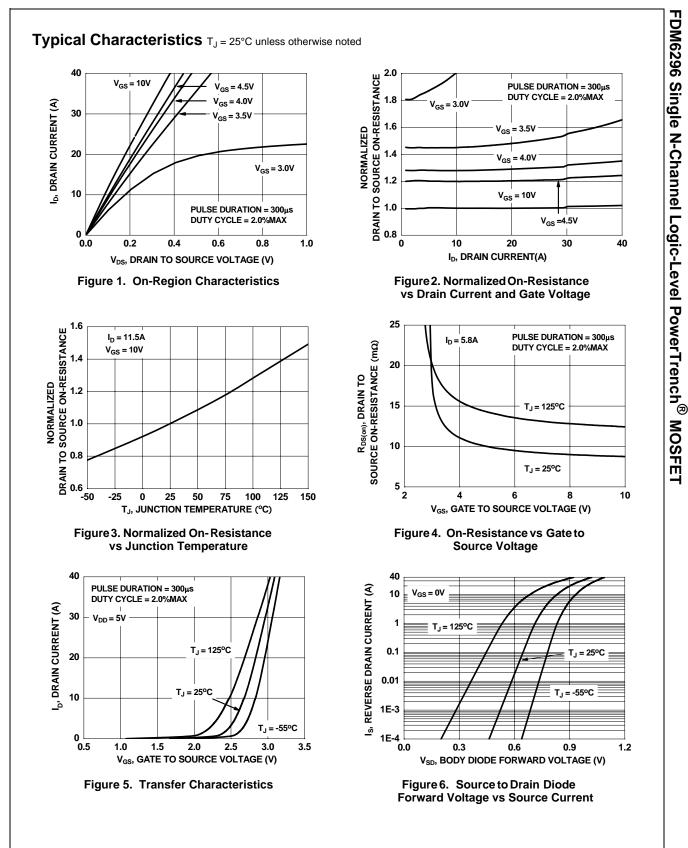
a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

b. 135°C/W when mounted on a minimum pad of 2 oz copper

20

2: Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.

FDM6296 Rev.E


www.fairchildsemi.com

nC

FDM6296 Single N-Channel Logic-Level PowerTrench[®] MOSFET


Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDM6296 - MOSFET N-CH 30V 11.5A POWER33 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

FDM6296 Rev.E

www.fairchildsemi.com

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDM6296 - MOSFET N-CH 30V 11.5A POWER33 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT Quiet Series™ OCX™ OCXPro™ GlobalOptoisolator™ OPTOLOGIC[®] HiSeC™ **OPTOPLANAR™** PACMAN™ POP™ ImpliedDisconnect™ Power247™ PowerEdge™ IntelliMAX™ **ISOPLANAR™** PowerSaver™ PowerTrench[®] LittleFET™ MICROCOUPLER™ QFET[®] MicroFET™ QS™ MicroPak™ QT Optoelectronics[™] MICROWIRE™ Quiet Series™ RapidConfigure™ MSXPro™ RapidConnect™ Across the board. Around the world.™ µSerDes™

GTO™

I²C™

i-Lo™

MSX™

SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ TinyBoost™ TinyBuck™ TinyPWM™ TinyPower™ TinyLogic[®] TINYOPTO™ TruTranslation™ UHC®

VCX™

UniFET™ Wire™

FDM6296 Single N-Channel Logic-Level PowerTrench $^{ extsf{m}}$ MOSFET

DISCLAIMER

DISCLAIMEN FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

ScalarPump™

LIFE SUPPORT POLICY

The Power Franchise[®]

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev. 122