

Excellent Integrated System Limited

Stocking Distributor

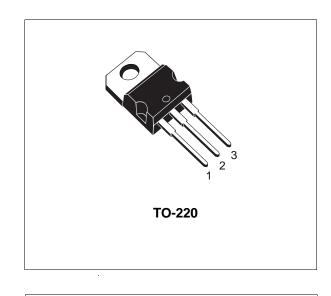
Click to view price, real time Inventory, Delivery & Lifecycle Information:

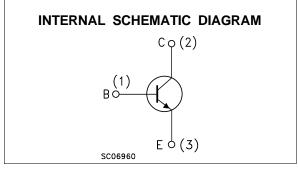
STMicroelectronics BUL138

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125°C


APPLICATIONS


- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

DESCRIPTION

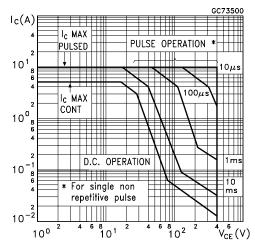
The BUL138 is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds.

The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

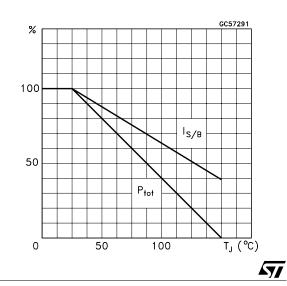
Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage (V _{BE} = 0)	800	V
Vceo	Collector-Emitter Voltage (I _B = 0)	400	V
V_{EBO}	Emitter-Base Voltage $(I_C = 0)$	9	V
I _C Collector Current		5	A
I _{CM}	Collector Peak Current (t _p < 5 ms)	10	A
IB	Base Current	2	A
I _{BM} Base Peak Current (t _p < 5 ms)		4	A
P_{tot} Total Dissipation at $T_c = 25 \ ^{\circ}C$		80	W
T _{stg} Storage Temperature		-65 to 150	°C
T _j Max. Operating Junction Temperature		150	°C

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA


R _{thj-case}	Thermal Resistance Junction-case	Max	1.56	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

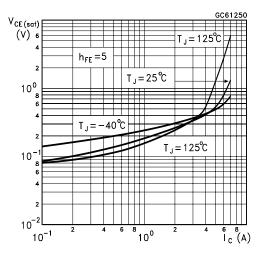
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 800 V V _{CE} = 800 V	T _j = 125 °C			100 500	μΑ μΑ
I _{CEO}	Collector Cut-off Current ($I_B = 0$)	V _{CE} = 400 V				250	μA
$V_{CEO(sus)}$	Collector-Emitter Sustaining Voltage	Ic = 100 mA L	= 25 mH	400			V
V_{EBO}	Emitter-Base Voltage	$I_E = 10 \text{ mA}$		9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 2 A$ $I_{C} = 3 A$ $I_{C} = 4 A$	$I_{B} = 0.2 A I_{B} = 0.4 A I_{B} = 0.6 A I_{B} = 1 A I_{B} = 1 A$		0.7	0.5 0.7 1 1	V V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{\rm C} = 2$ A	$I_B = 0.2 A$ $I_B = 0.4 A$ $I_B = 0.6 A$			1.1 1.3 1.5	V V V
h _{FE} *	DC Current Gain	-	V _{CE} = 5 V V _{CE} = 5 V	8 10		40	
t _s	RESISTIVE LOAD Storage Time	I _C = 2 A V _{CC} = 250 V	$I_{B1} = -I_{B2} = 0.4 \text{ A}$	2.4		3.5	μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 2 A$ $V_{BE(off)} = -5 V$ $V_{CL} = 250 V$	$I_{B1} = 0.4 \text{ A}$ $R_{BB} = 0 \Omega$ $L = 200 \mu \text{H}$		0.7 50	1.4 100	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time		$I_{B1} = 0.4 \text{ A}$ $R_{BB} = 0 \Omega$ $L = 200 \mu \text{H}$		1 75		μs ns

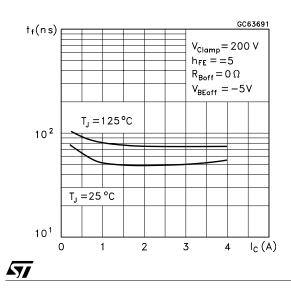
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Areas

Derating Curve

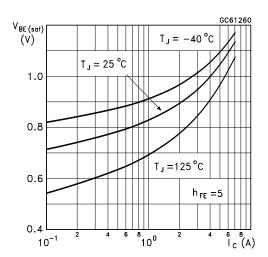


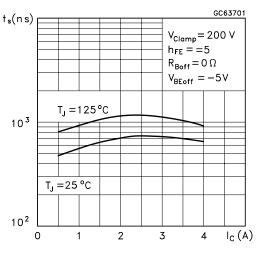
DC Current Gain


BUL138

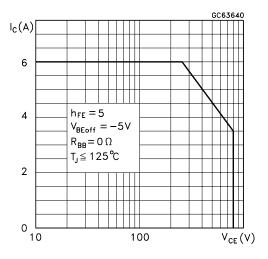
h _{FE} T_J=125°C 25 •40 °C 10¹ $V_{CE} = 1V$ 10⁰ $\overline{\begin{smallmatrix} 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ (A)$ ⁶⁸10⁻¹ ⁶⁸10⁰ 10⁻² 10^{-3}

Collector-Emitter Saturation Voltage

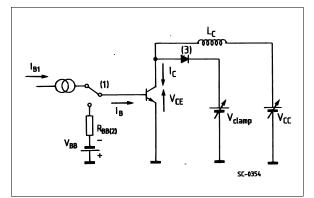

Inductive Fall Time


DC Current Gain

Base-Emitter Saturation Voltage



Inductive Storage Time

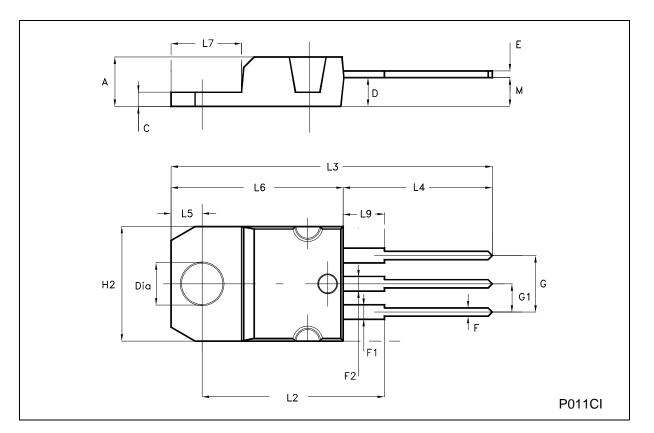


Reverse Biased SOA

RBSOA and Inductive Load Switching Test Circuits

57

1) Fast electronic switch


2) Non-inductive Resistor

3) Fast recovery rectifier

DIM.	mm			inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.052	
D	2.40		2.72	0.094		0.107	
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.202	
G1	2.40		2.70	0.094		0.106	
H2	10.00		10.40	0.394		0.409	
L2		16.40			0.645		
L4	13.00		14.00	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.20		6.60	0.244		0.260	
L9	3.50		3.93	0.137		0.154	
М		2.60			0.102		
DIA.	3.75		3.85	0.147		0.151	

TO-220 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

