Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: STMicroelectronics L6370L For any questions, you can email us directly: sales@integrated-circuit.com L6370 ### 2.5A high-side driver industrial intelligent power switch #### **Features** - 2.5A output current - 9.5V to 35V supply voltage range - Internal current limiting - Thermal shutdown - Open ground protection - Internal negative voltage clamping to V_S 50V for fast demagnetization - Differential inputs with large common mode range and threshold hysteresis - Undervoltage lockout with hysteresis - Open load detection - Two diagnostic outputs - Output status led driver - Non dissipative short circuit protection - Protection against and surge transient (IEC 61000-4-5) - Immunity against burst transient (IEC 61000-4-4) - ESD protection (human body model ±2kV) ### **Description** The L6370 is a monolithic Intelligent Power Switch in Multipower BCD Technology, for driving inductive or resistive loads. An internal Clamping Diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device extremely rugged and specially suitable for industrial automation applications.. Table 1. Device summary | Part number | Op. Temp. range, °C | Package | Packaging | |-------------|---------------------|-------------|-------------| | L6370L | -25 to +85 | MULTIWATT11 | Tube | | L6370D | -25 to +85 | PowerSO-20 | Tube | | L6370D013TR | -25 to +85 | PowerSO-20 | Tape & Reel | February 2007 Rev 6 1/20 Contents L6370 # **Contents** | 1 | Bloc | Block diagram and pin description | | | | | | |---|------|--|------|--|--|--|--| | | 1.1 | Pin description | 4 | | | | | | 2 | Elec | trical specifications | 5 | | | | | | | 2.1 | Absolute maximum ratings | 5 | | | | | | | 2.2 | Thermal data | 5 | | | | | | | 2.3 | Electrical characteristics | 6 | | | | | | | 2.4 | AC operation | 8 | | | | | | 3 | Circ | uit description | 9 | | | | | | | 3.1 | Diagnostic truth table | . 10 | | | | | | | 3.2 | Input section | . 10 | | | | | | | 3.3 | Diagnostic logic | . 10 | | | | | | | 3.4 | Short circuit operation | . 11 | | | | | | | 3.5 | Overtemperature protection (OVT) | . 11 | | | | | | | 3.6 | Undervoltage protection (UV) | . 11 | | | | | | | 3.7 | Demagnetization of inductive loads | . 12 | | | | | | 4 | Pack | kage mechanical data | . 13 | | | | | | | 4.1 | Multiwatt11 (in-line) mechanical data & package dimensions | . 14 | | | | | | | 4.2 | PowerSO-20 mechanical data & package dimensions | . 15 | | | | | | | 4.3 | PowerSO-20 packing information | . 16 | | | | | | 5 | Povi | ision history | 10 | | | | | Block diagram and pin description #### L6370 ### Block diagram and pin description Figure 1. **Block diagram** Figure 2. Pin connection (top view) #### Block diagram and pin description L6370 ### 1.1 Pin description Table 2. Pin description (pin numbering referred to MULTIWATT package) | Pin N° | Pin name | Function | |--------|----------------|---| | 1 | DIAG1 | DIAGNOSTIC 1 output. This open drain reports the IC working conditions. (See Diagnostic truth <i>Table 7</i>) | | | | DIAGNOSTIC 2 output. This open drain reports the IC working conditions. (See Diagnostic truth <i>Table 7</i>) | | 3 | IN- | Comparator non inverting input | | 4 | IN+ | Comparator inverting input | | 5 | OUTSTATUS | This current source output is capable of driving a LED to signal the status of the output pin. The pin is active (source current) when the output pin is considered high (See <i>Figure 3</i>) | | 6 | GND | Ground | | 7 | ON-DELAY | Programmable ON time interval duration during short circuit operation | | 8 | RSC | Current limitation setting. | | 9 | OUTPUT | High Side output with built-in current limitation | | 10 | V _S | Supply Volatge Input, the value of the supply voltage is monitored to detect under voltage condition | | 11 | OUTPUT | High Side output with built-in current limitation | Electrical specifications #### L6370 # 2 Electrical specifications ### 2.1 Absolute maximum ratings Table 3. Absolute maximum ratings (Pin numbering referred to MULTIWATT package) | Symbol | Parameter | Value | Unit | |--------------------------------|--|---------------------------|------| | V _S | Supply Voltage (Pin 10) (T _W < 10ms) | 50 | V | | V _S -V _O | Supply to Output Differential Voltage.
See also V _{CI} (Pins 10 - 9) | internally limited | V | | V _{od} | Externally Forced Voltage (Pin7) | -0.3 to 7 | V | | I _{od} | Externally Forced Voltage (Pin7) | +1 | mA | | V _i | Input Voltage (Pins 3/4) | -10 to V _S +10 | V | | Vi | Differential Input Voltage (Pins 3 - 4) | 43 | V | | l _i | Input Current (Pins 3/4) | 20 | mA | | Io | Output Current (Pin 9). See also ISC (Pin 9) | internally limited | Α | | P _{TOT} | Power Dissipation. See also Thermal Characteristics. | internally limited | W | | T _{OP} | Operating Temperature Range (T _{amb}) | -25 to +85 | °C | | T _{STG} | Storage Temperature | -55 to 150 | °C | | E _l | Energy Induct. Load T _J = 85°C | 1 | J | ### 2.2 Thermal data Table 4. Thermal data | Symbol | Description | MULTIWATT11 | PowerSO-20 | Unit | | |-------------------|--|-------------|------------|------|------| | R _{thJC} | Thermal Resistance Junction to case | Max. | 1.5 | 1.5 | °C/W | | R _{thJA} | Thermal Resistance Junction to ambient | Max. | 35 | - | C/VV | #### **Electrical specifications** L6370 #### 2.3 Electrical characteristics Table 5. Electrical characteristics $(V_S = 24V; T_J = -25 \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise specified})$ | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-------------------|---|---|-------------|-----------------------|------------|------| | V _{smin} | Supply Voltage for Valid Diagnostics | I _{diag} > 0.5mA ; V _{dg1} = 1.5V | 4 | | 35 | V | | V _s | Supply Voltage (operative) | | 9.5 | 24 | 35 | V | | Iq | Quiescent Current
I _{out} = I _{os} = 0 | V _{il}
V _{ih} | | 0.8
3 | 1.4
4 | mA | | V _{sth1} | Undervoltage Threshold 1 | (See <i>Figure 3</i>), T _{amb} = 0 to +85°C | 8.5 | 9 | 9.5 | V | | V _{sth2} | Undervoltage Threshold 2 | | 8 | 8.5 | 9 | V | | V _{sth3} | Supply Voltage Hysteresis | | 300 | 500 | 700 | mV | | I _{sc} | Short Circuit Current | $V_S = 9.5$ to 35V; $R_L = 2\Omega 5k\Omega < R_{SC} < 30k\Omega$ | 1 | 5/R _{SC} (kΩ | 2) | Α | | | | 0< R _{SC} < 5kΩ | 2.6 | 3.2 | 4 | Α | | V | Output Voltage Pres | $\begin{aligned} I_{\text{out}} = 2.0\text{A} & T_{j} = 25^{\circ}\text{C} \\ T_{j} = 25^{\circ}\text{C} & \end{aligned}$ | | 200
320 | 280
440 | mV | | V _{don} | Output Voltage Drop | $\begin{aligned} I_{out} = 2.5 A & T_j = 25^{\circ} C \\ T_j = 25^{\circ} C & \end{aligned}$ | | 250
400 | 350
550 | mV | | I _{oslk} | Output Leakage Current | $V_i = V_{il}$; $V_o = 0V$ | | | 500 | μА | | V _{ol} | Low State Out Voltage | $V_i = V_{il}; R_L = \infty$ | | 0.8 | 1.5 | V | | V _{cl} | Internal Voltage Clamp (V _S - V _O) | I _O = 1A
Single Pulsed: T _p = 300μs | 48 | 53 | 58 | V | | I _{old} | Open Load Detection Current | $V_i = Vi_h$; $T_{amb} = 0$ to +85°C | 1 | 3 | 6 | mA | | V _{id} | Common Mode Input Voltage
Range (Operative) | V _S = 18 to 35V | -7 | | 15 | V | | I _{ib} | Input Bias Current | $V_i = -7 \text{ to } 15V; -ln = 0V$ | -250 | | 250 | μΑ | | V_{ith} | Input Threshold Voltage | V +ln > V -ln | 0.8 | 1.4 | 2 | V | | V _{iths} | Input Threshold Hysteresis
Voltage | V +In > V -In | 50 | | 400 | mV | | R _{id} | Diff. Input Resistance | 0 < +ln < +16V ; -ln = 0V
-7 < +ln < 0V ; -ln = 0V | | 400
150 | | ΚΩ | | | | V +In = V -In +Ii
0V < Vi < 5.5V -Ii | -20
-75 | -25 | +20 | | | I _{ilk} | Input Offset Current | -In = GND +li
0V < V+ln <5.5V -li | -250 | +10
-125 | +50 | μА | | | | +In = GND +Ii
0V < V-In <5.5V -Ii | -100
-50 | -30
-15 | | | L6370 Electrical specifications #### Table 5. Electrical characteristics (continued) $(V_S = 24V; T_J = -25 \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise specified})$ | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-------------------------|--|---|------|-----------|------|------| | V _{oth1} | Output Status Threshold 1
Voltage | | 4.5 | 5 | 5.5 | V | | V _{oth2} | Output Status Threshold 2
Voltage | (See <i>Figure 3</i>) | 4 | 4.5 | 5.0 | V | | V _{ohys} | Output Status Threshold
Hysteresis | | 300 | 500 | 700 | mV | | I _{osd} | Output Status Source Current | $V_{out} > V_{oth1}$; $V_{os} = 2.5V$ | 2 | | 4 | mA | | V _{osd} | Active Output Status Driver Drop Voltage | $V_s - V_{os}$; $I_{os} = 2mA$
$T_{amb} = 0 \text{ to } +85^{\circ}C$ | | 1.5 | 3 | V | | I _{oslk} | Output Status Driver Leakage
Current | $V_{out} < V_{oth2}; V_{os} = 0V$
$V_{S} = 9.5 \text{ to } 35V$ | | | 25 | μΑ | | V _{dgl} | Diagnostic Drop Voltage | D1 / D2 = L ; Idiag= 0.5mA
D1 / D2 = L ; Idiag= 3mA | | 40
250 | | mV | | l _{dglk} | Diagnostic Leakage Current | D1 / D2 = H ; 0 < Vdg < V _s
V _S = 9.5 to 35V | | | 5 | μΑ | | Source dr | ain NDMOS diode | | | | | | | V _{fsd} | Forward On Voltage | @ I _{fsd} = 2.5A | | 1 | 1.5 | ٧ | | I _{fp} | Forward Peak Current | t = 10ms; d = 20% | | | 6 | Α | | t _{rr} | Reverse Recovery Time | I _f = 2.5A di/dt = 25A/μs | | 200 | | ns | | t _{fr} | Forward Recovery Time | | | 100 | | ns | | Thermal characteristics | | | | | | | | ΘLim | Junction Temp. Protect. | | 135 | 150 | | °C | | ΘΤΗ | Thermal Hysteresis | | | 20 | | °C | Note: $V_{il} \le 0.8V, V_{ih} \ge 2V @ (V+In > V-In)$ #### **Electrical specifications** L6370 ### 2.4 AC operation #### Table 6. AC operation (pin numbering referred to MULTIWATT package) | Symbol | Pin | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---------------------------------|--------|--|---|------|------|------|-----------------| | t _r - t _f | 9 vs 4 | Rise or Fall Time | $V_S = 24V; R_I = 70\Omega;$
R_I to ground | | 20 | | μS | | t _d | 9 vs 3 | Delay Time | | | 5 | | μS | | dV/dt | 9, 11 | Slew Rate (Rise and Fall Edge) | | 0.7 | 1 | 1.5 | V/μs | | t _{ON} | 7 | On time during Short Circuit Condition | 50pF < C _{DON} < 2nF | | 1.28 | | μs/pF | | t _{OFF} | | Of time during hort Circuit Condition | | | 64 | | t _{ON} | | f _{max} | | Maximum Operating
Frequency | | | 25 | | KHz | L6370 Circuit description # 3 Circuit description Figure 3. Output status hysteresis Figure 4. Undervoltage comparator hysteresis Figure 5. Switching waveforms Circuit description L6370 ### 3.1 Diagnostic truth table Table 7. Diagnostic truth table | Diagnostic conditions | Input | Output | Diag1 | Diag2 | |--|-------|--------|-------|-------| | Normal Operation | L | L | Н | Н | | Normal Operation | Н | Н | Н | Н | | Open Load Condition (I _o < I _{old}) | L | L | Н | Н | | Open Load Condition (10 1 10ld) | Н | Н | L | Н | | Short to V _S | L | Н | L | Н | | Short to v _S | Н | Н | L | Н | | Short Circuit to Ground (I _O = I _{SC}) (**) | Н | H (*) | Н | Н | | (pin ON-DELAY grounded) | '' | L | Н | Н | | Output DMOS Open | L | L | Н | Н | | Output Divios Open | Н | L | L | Н | | Overtemperature | L | L | Н | L | | Overtemperature | Н | L | Н | L | | Supply Undervoltage (V > V | L | L | L | L | | Supply Undervoltage (V _S < V _{sth2}) | Н | L | L | L | Note: ### 3.2 Input section The input section is an high impedance differential stage with high common and differential mode range. There's built-in offset of +1.4V (typical value) and an hysteresis of 400mV (maximum value), to ensure high noise immunity. # 3.3 Diagnostic logic The operating conditions of the device are permanently monitored and the following occurences are signalled via the DIAG1/DIAG2 open-drain output pins: - Short Circuit versus ground. A current limiting circuit fixes at I_{sc} = 3.2A (typical value) the maximum current that can be sourced from the OUTPUT pin (for more details see short circuit operation section). - Short Circuit versus Vs. - Under Voltage(UV) - Over Temperature (OVT) - Open Load, if the output current is less than 3mA (typical value). - Output DMOS Open according to the diagnostic Truth Table 7 ^(*) According to the intervention of the current limiting block. ^(**) A cold lamp filament, or a capacitive load may activate the current limiting circuit of the IPS, when the IPS is initially turned on. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com L6370 Circuit description ### 3.4 Short circuit operation In order to minimise the power dissipation when the output is shorted to grounded, an innovative, non dissipative short cicuit protection (patent pending) is implemented, avoiding, thus the intervention of the thermal protection in most cases. Whenever the output is shorted to ground, or, generally speaking, an over current is sinked by the load, the output devices is driven in linear mode, sourcing the lsc current (typically 3.2A) for a time interval (ton) defined by means of the external CON capacitor connected between the ONDELAY pin and GND. Whether the short circuit crease within the ton interval the DIAG2 output status is not affected, acting as a Programmable Diagnostic Delay. This function allow the device to drive a capacitive load or a filament lamp (that exhibits a very low resistance during the initial heading phase) without the intervention of the diagnostic. If the short circuit lasts for the whole t_{ON} interval, the output DMOS is switched OFF and the DIAG2 goes low, for a time interval t_{OFF} lasting 64 times t_{ON} . At the end of the t_{OFF} interval if the short circuit condition is still present, the output DMOS is turned ON (and the DIAG2 goes high - see *Figure 7*) for another t_{ON} interval and the sequence starts again, or, whether not, the normal condition operation is resumed. The t_{ON} interval can be set to lasts between 64ms and 2.56ms for a C_{ON} capacitor value ranging between 50pF and 2nF to have: $$t_{ON} (\mu s) = 1.28 C_{ON} (pF)$$ If the ON-DELAY pin is grounded the non dissipative short circuit protection is disabled, and the Isc current is delivered until the Overtemperature Protection shuts the device off. The behaviour of the DIAG2 output is, in this situation, showed in the Diagnostic Truth *Table 7*. ### 3.5 Overtemperature protection (OVT) If the chip temperature exceeds Qlim (measured in a central position in the chip) the chip deactivates itself. The following actions are taken: all the output stage is switched off; the signal DIAG2 is activated (active low). Normal operation is resumed as soon as (typically after some seconds) the chip temperature monitored goes back below Θ_{lim} - Θ_{H} . The different thresholds with hysteretic behavior assure that no intermittent conditions can be generated. ### 3.6 Undervoltage protection (UV) The supply voltage is expected to range from 9.5V to 35V, even if its reference value is considered to be 24V. In this range the device operates correctly. Below 9.5V the overall system has to be considered not reliable. Protection will thus shut off the output whenever the supply voltage falls below the mask fixed by the $V_{sth1}(9V \text{ typ.})$ and V_{sth2} (8.5V typ.). Circuit description L6370 > The hysteresis (see Figure 4) ensures a non intermittent behavior at low supply voltage with a superimposed ripple. The Under Voltage status is signalled via the DIAG1 and DIAG2 outputs (see the Diagnostic Truth Table 7). #### **Demagnetization of inductive loads** 3.7 An internal zener diode, limiting the voltage across the Power MOS to between 50 and 60V (V_{cl}), provides safe and fast demagnetization of inductive loads without external clamping devices. The maximum energy that can be absorbed from an inductive load is specified as 1J (at $T_i = 85^{\circ}C$) (see *Figure 4*). Figure 6. L6370 short circuit operation waveforms ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of L6370L - IC IPS MONO 2.5A 11-MULTIWATT Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com L6370 Package mechanical data # 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com L6370 # 4.1 MULTIWATT11 (in-line) mechanical data & package dimensions Figure 8. MULTIWATT11 (in-line) mechanical data & package dimensions | DIM. | | mm | | | inch | | |--------|-------|------|-------|-------|-------|-------| | DIIVI. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | Α | | | 5 | | | 0.197 | | В | | | 2.65 | | | 0.104 | | С | | | 1.6 | | | 0.063 | | Е | 0.49 | | 0.55 | 0.019 | | 0.022 | | F | 0.88 | | 0.95 | 0.035 | | 0.037 | | G | 1.57 | 1.7 | 1.83 | 0.062 | 0.067 | 0.072 | | G1 | 16.87 | 17 | 17.13 | 0.664 | 0.669 | 0.674 | | H1 | 19.6 | | | 0.772 | | | | H2 | | | 20.2 | | | 0.795 | | L | 26.4 | | 26.9 | 1.039 | | 1.059 | | L1 | 22.35 | | 22.85 | 0.880 | | 0.900 | | L3 | 17.25 | 17.5 | 17.75 | 0.679 | 0.689 | 0.699 | | L4 | 10.3 | 10.7 | 10.9 | 0.406 | 0.421 | 0.429 | | L7 | 2.65 | | 2.9 | 0.104 | | 0.114 | | S | 1.9 | | 2.6 | 0.075 | | 0.102 | | S1 | 1.9 | | 2.6 | 0.075 | | 0.102 | | Dia1 | 3.65 | | 3.85 | 0.144 | | 0.152 | #### L6370 #### PowerSO-20 mechanical data & package dimensions 4.2 Figure 9. PowerSO-20 mechanical data & package dimensions | | mm | | | inch | | | |--------|------------|-------|------|-------|-------|-------| | DIM. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | Α | | | 3.6 | | | 0.142 | | a1 | 0.1 | | 0.3 | 0.004 | | 0.012 | | a2 | | | 3.3 | | | 0.130 | | a3 | 0 | | 0.1 | 0.000 | | 0.004 | | b | 0.4 | | 0.53 | 0.016 | | 0.021 | | С | 0.23 | | 0.32 | 0.009 | | 0.013 | | D (1) | 15.8 | | 16 | 0.622 | | 0.630 | | D1 (2) | 9.4 | | 9.8 | 0.370 | | 0.386 | | Е | 13.9 | | 14.5 | 0.547 | | 0.570 | | е | | 1.27 | | | 0.050 | | | e3 | | 11.43 | | | 0.450 | | | E1 (1) | 10.9 | | 11.1 | 0.429 | | 0.437 | | E2 | | | 2.9 | | | 0.114 | | E3 | 5.8 | | 6.2 | 0.228 | | 0.244 | | G | 0 | | 0.1 | 0.000 | | 0.004 | | I | 15.5 | | 15.9 | 0.610 | | 0.626 | | h | | | 1.1 | | | 0.043 | | L | 0.8 | | 1.1 | 0.031 | | 0.043 | | N | 8°(typ.) | | | | | | | S | 8° (max.) | | | | | | | Т | | 10 | | | 0.394 | | - (1) "D and E1" do not include mold flash or protusions. - Mold flash or protusions shall not exceed 0.15mm (0.006") Critical dimensions: "E", "G" and "a3". (2) For subcontractors, the limit is the one quoted in jedec MO-166 #### **OUTLINE AND MECHANICAL DATA** L6370 ### 4.3 PowerSO-20 packing information Figure 10. PowerSO-20 tube shipment information | TUBE MECHANICAL DATA | | | | | | | |----------------------|------------|--------------|--|--|--|--| | | mm. | inch | | | | | | Α | 18.80 | 0.740 | | | | | | В | 17.2 ±0.2 | 0.677 ±0.008 | | | | | | С | 8.20 ±0.2 | 0.323 ±0.008 | | | | | | D | 10.90 ±0.2 | 0.429 ±0.008 | | | | | | E | 2.90 ±0.2 | 0.114 ±0.008 | | | | | | F | 0.40 | 0.016 | | | | | | G | 0.80 | 0.031 | | | | | | Н | 6.30 | 0.248 | | | | | | I | 4.30 ±0.2 | 0.165 ±0.008 | | | | | | J | 3.7 ±0.2 | 0.146 ±0.008 | | | | | | K | 9.4 | 0.370 | | | | | | L | 0.40 | 0.016 | | | | | | M | 0.80 | 0.031 | | | | | | N | 3.50 ±0.2 | 0.138 ±0.008 | | | | | | BASE QUANTITY | 31 pcs. | |---------------|----------| | BULK QUANTITY | 310 pcs. | **577** #### L6370 Figure 11. PowerSO-20 tape shipment specification | TAPE MECHANICAL DATA | | | |----------------------|----------------------|-------------------------| | | mm. | inch | | D | 1.50 +0.1/0 | 0.059 +0.004/0 | | E | 1.75 ±0.1 | 0.069 ±0.004 | | Po | 4.00 ±0.1 | 0.157 ±0.004 | | T max. | 0.40 | 0.016 | | D1 min. | 1.50 | 0.059 | | F | 11.5 ±0.05 | 0.453 ±0.002 | | K max. | 6.50 | 0.256 | | P2 | 2.00 ±0.1 | 0.079 ±0.004 | | R | 50 | 1.968 | | W | 24.00 ±0.30 | 0.945 ±0.012 | | P1 | 24.00 | 0.945 | | Ao, Bo, Ko | 0.05 min to 1.0 max. | 0.002 min to 0.039 max. | | BASE QUANTITY | 600 pcs. | |---------------|----------| | BULK QUANTITY | 600 pcs. | L6370 Figure 12. PowerSO-20 reel shipment specification Figure 13. Footprint recommended data L6370 Revision history # 5 Revision history Table 8. Revision history | Date | Revision | Changes | |-------------|----------|--| | 10-Aug-2003 | 3 | Initial release. | | 12-Dec-2005 | 4 | Applied new Look & Feel Style Sheet. Added L6370D013TR part number. Updated Package and Packing section. | | 26-Apr-2006 | 5 | Document has been reformatted | | 19-Feb-2007 | 6 | Typo in Figure 2 on page 3. | ### Distributor of STMicroelectronics: Excellent Integrated System Limited Datasheet of L6370L - IC IPS MONO 2.5A 11-MULTIWATT Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com L6370 #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com