

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor MM82C19N

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Features

■ Wide supply voltage range: 3.0V to 15V

■ High noise immunity: 0.45 V_{CC} (typ.)

TTL compatibility: Drive 1 TTL Load

■ Guaranteed noise margin: 1.0V

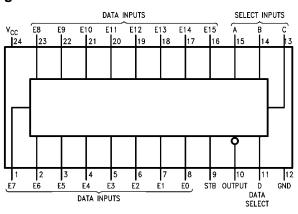
FAIRCHILD

SEMICONDUCTOR

MM82C19 16-Line to 1-Line Multiplexer

General Description

The MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines the particular 1-of-16 inputs which is routed to the output. The data is inverted from input to output.


A strobe override places the output of MM82C19 in the high-impedance state.

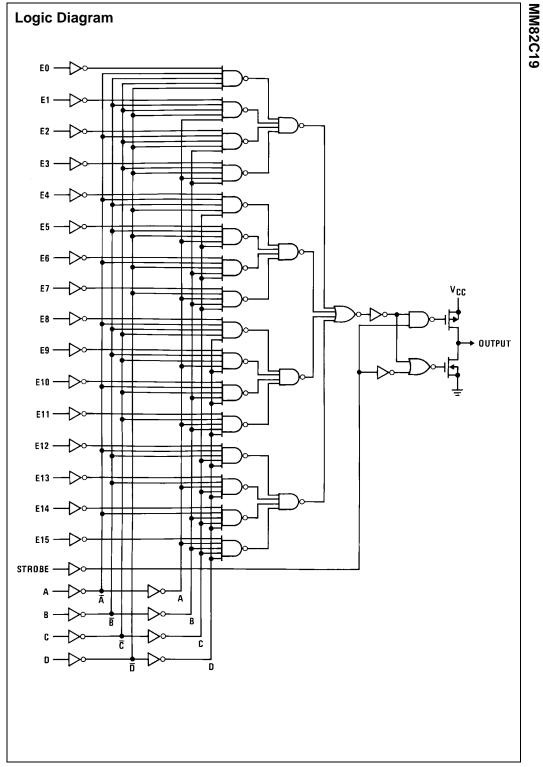
All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{\rm CC}$ and GND.

Ordering Code:

Order Number	Package Number	Package Description
MM82C19N	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600" Wide

Connection Diagram

October 1987 Revised January 2004


MM82C19 16-Line to 1-Line Multiplexer

MM82C19

									-	nput	//82C										Outpu
)	С	в	Α	STROBE	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	W
(Х	Х	Х	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	High-2
)	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	1
)	0	0	0	0	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	0
0	0	0	1	0	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	1
0	0	0	1	0	Х	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0
0	0	1	0	0	X	X	0	X	X	X	X	X	X	Х	Х	X	X	Х	X	X	1
0	0	1	0	0	X X	X X	1 X	Х 0	X	X	X	X X	0								
0 0	0 0	1 1	1 1	0	x	x	x	1	X X	X X	X X	x	x	x	X	x	x	X	X	x	1 0
0	1	0	0	0	x	X	x	x	0	x	x	x	x	x	X	x	X	X	x	x	1
0	1	0	0	0	X	x	x	x	1	x	x	x	x	X	Х	X	Х	X	x	x	0
0	1	0	1	0	x	Х	х	х	x	0	х	х	Х	X	X	Х	Х	x	x	X	1
0	1	0	1	0	х	х	Х	х	х	1	х	х	х	х	Х	Х	Х	Х	Х	х	0
0	1	1	0	0	х	Х	Х	Х	Х	Х	0	х	Х	Х	Х	Х	Х	Х	х	х	1
0	1	1	0	0	х	Х	Х	Х	Х	Х	1	Х	Х	Х	Х	Х	Х	Х	Х	х	0
0	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	1
0	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	1	Х	Х	Х	Х	Х	Х	Х	Х	0
1	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	1
1	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	1	Х	Х	Х	Х	Х	Х	Х	0
1	0	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	1
1	0	0	1	0	X	X	X	Х	X	X	X	X	X	1	X	X	X	Х	X	X	0
1	0	1	0	0	X	X	X	X	X	X	X	X	X	X	0	X	X	X	X	X	1
1	0 0	1 1	0 1	0	X X	1 X	X 0	X X	X X	X X	X X	0 1									
1 1	0	1	1	0	x	x	x	x	x	x	x	x	x	x	X	1	x	x	x	x	0
1	1	0	0	0	x	x	x	x	x	x	x	x	x	x	X	x	0	X	X	x	1
1	1	0	0	0	X	Х	Х	X	Х	X	X	x	x	Х	x	х	1	x	x	x	0
1	1	0	1	0	х	х	х	х	х	х	х	Х	х	Х	х	х	х	0	х	х	1
1	1	0	1	0	х	Х	Х	х	х	Х	Х	Х	х	Х	х	Х	х	1	х	х	0
1	1	1	0	0	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	0	х	1
1	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	х	0
1	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	1
1	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	0

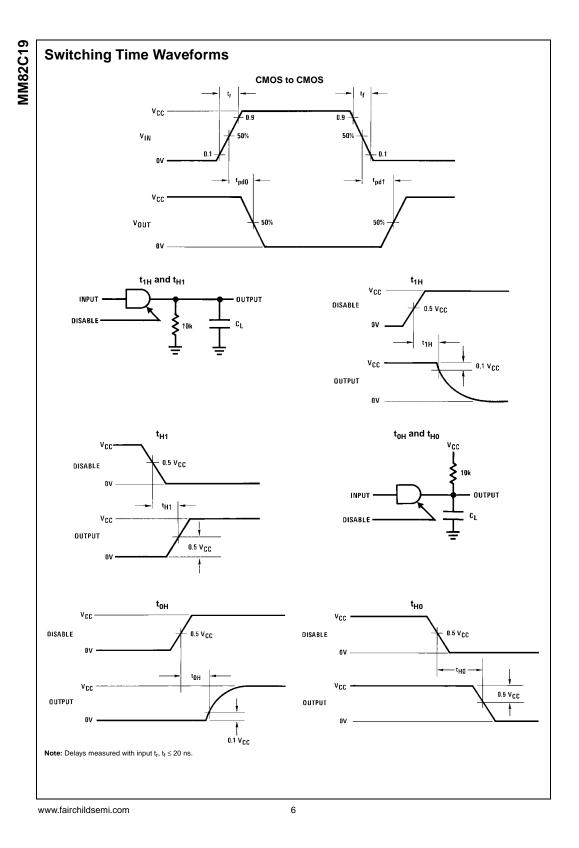
Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V
V _{CC}	18V
Lead Temperature	
(soldering, 10 seconds)	260°C

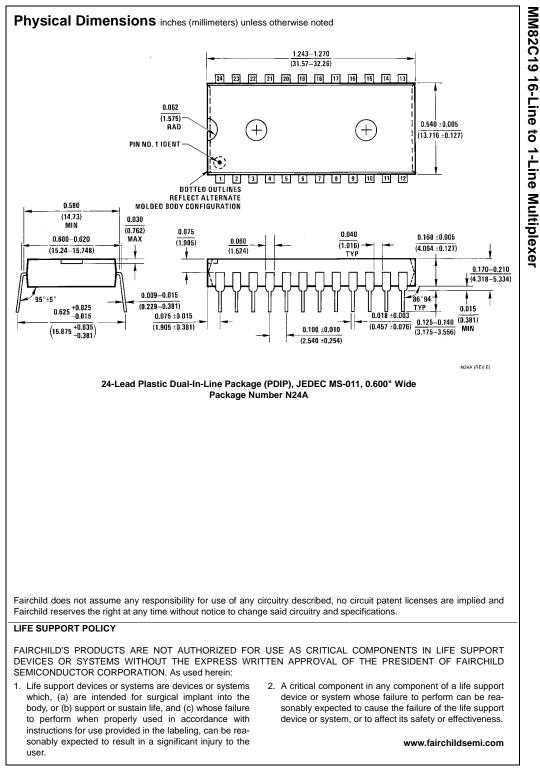
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristic table provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS to	CMOS		1			
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	
. ,		$V_{CC} = 10V$			2.0	V
VOUT(1)	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			.,
()		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V
/ _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$			0.5	
		$V_{CC} = 10V, I_{O} = +10 \ \mu A$			1.0	V
IN(1)	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	V
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
oz	Output Current in High					
-	Impedance State					
	MM82C19	$V_{CC} = 15V, V_{O} = 15V$		0.005	1.0	μA
		$V_{CC} = 15V, V_O = 0V$	-1.0	-0.005		
сс	Supply Current	V _{CC} = 15V	-	0.05	300	μA
	TTL Interface					<i></i>
V _{IN(1)}	Logical "1" Input Voltage	74C, 82C, V _{CC} = 4.75V	V _{CC} -1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$74C, 82C, V_{CC} = 4.75V$			0.8	V
VOUT(1)	Logical "1" Output Voltage	74C, 82C, $V_{CC} = 4.75V$, $I_O = -1.6$ mA	2.4		0.0	v
V _{OUT(0)}	Logical "0" Output Voltage	74C, 82C, $V_{CC} = 4.75V$, $I_O = 1.6 \text{ mA}$			0.4	v
()	ive (Short Circuit Current)	140, 020, 466 - 4.104, 10 - 1.0 11/4			0 .4	Ŷ
SOURCE	Output Source Current	V _{CC} = 5.0V, V _{OUT} = 0V, T _A = 25°C	-4.35	-8		mA
SOURCE	(P-Channel)	VCC = 0.00, V001 = 00, 1A = 20 0	4.00	0		in v
SOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V, T_A = 25^{\circ}C$	-20	-40		mA
SOURCE	(P-Channel)	VCC = 10V, VOUT = 0V, TA = 20 0	-20	-40		ШA
	Output Sink Current	V _{CC} = 5.0V, V _{OUT} = V _{CC} , T _A = 25°C	4.35	8		mA
SINK	(N-Channel)	VCC = 5.00, VOUT = VCC, 1A = 25 0	4.00	0		ШA
	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}, T_A = 25^{\circ}C$	20	40		mA
I _{SINK}	(N-Channel)	$v_{CC} = 10^{\circ}, v_{OUT} = v_{CC}, r_A = 23^{\circ}C$	20	40		IIIA
	(N-Channel)					


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd0} , t _{pd1}	Propagation Delay Time to a	V _{CC} = 5.0V		250	600		
	Logical "0" or Logical "1"	$V_{CC} = 10V$		110	300		
	from Data Inputs to Output	$V_{CC} = 5.0V, C_{L} = 150 \text{ pF}$		290	650	ns	
		$V_{CC} = 10V, C_{L} = 150 \text{ pF}$		120	330		
t _{pd0} , t _{pd1}	Propagation Delay Time to a	$V_{CC} = 5.0V$		290	650		
	Logical "0" or Logical "1"	$V_{CC} = 10V$		120	330	ns	
	from Data Select Inputs to Output						
t _{pd0} , t _{pd1}	Propagation Delay Time to a	$V_{CC} = 5.0V$		120	300		
	Logical "0" or Logical "1"	$V_{CC} = 10V$		55	150	ns	
	from Strobe to Output MM74C150						
t _{1H} , t _{OH}	Delay from Strobe to High	$V_{CC} = 5.0V, R_L = 10k, C_L = 5 \text{ pF}$		80	200		
	Impedance State MM82C19	$V_{CC} = 10V, R_L = 10k, C_L = 5 \text{ pF}$		60	150	ns	
t _{H1} , t _{H0}	Delay from Strobe to Logical	$V_{CC} = 5.0V, R_L = 10k, C_L = 5 \text{ pF}$		80	250	20	
	"1" Level or to Logical "0"	$V_{CC} = 10V, R_L = 10k, C_L = 5 \text{ pF}$		30	120	ns	
	Level (from High Impedance State)						
	MM82C19						
C _{IN}	Input Capacitance	Any Input (Note 3)		5.0		pF	
C _{OUT}	Output Capacitance	(Note 3)		11.0		pF	
	MM82C19						
C _{PD}	Power Dissipation Capacitance	(Note 4)		100		pF	

Note 2: AC Parameters are guaranteed by DC correlated testing.


Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics, application note AN-90.

