Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics STTH20003TV1

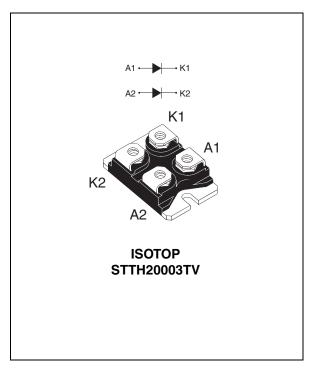
For any questions, you can email us directly: sales@integrated-circuit.com

STTH20003TV

Ultrafast high voltage rectifier

Mian product characteristics

I _{F(AV)}	up to 2 x 100 A
V _{RRM}	300 V
T _j (max)	150° C
V _F (typ)	0.95 V
t _{rr} (max)	90 ns


Features and benefits

- Combines highest recovery and reverse voltage performance
- Ultrafast, soft and noise-free recovery
- Package insulation voltage 2500 V_{rms}
- low inductance and low capacitance allow simpler layout

Description

Dual rectifiers suited for Switch Mode Power Supply and high frequency DC to DC converters.

Packaged in ISOTOP™, this device is intended for use in low voltage, high frequency inverters, free wheeling operation, welding equipment and telecom power supplies.

Order codes

Part number	Marking
STTH20003TV	STTH20003TV

Table 1. Absolute ratings (limiting values, per diode, $T_c = 25^{\circ}$ C unless otherwise stated)

Symbol	Param	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage			300	V
I _{F(RMS)}	RMS forward current			180	Α
	Average forward current	$T_{c} = 85^{\circ} \text{ C } \delta = 0.5$	Per diode	100	Α
IF(AV)	I _{F(AV)} Average forward current		Per device	200	A
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$		100	Α	
T _{stg}	Storage temperature range	-55 to + 150	° C		
Tj	Maximum operating junction temperature			150	° C

TM: ISOTOP is a registered trademark of STMicroelectronics

September 2006 Rev 2 1/7

Characteristics STTH20003TV

1 Characteristics

Table 2. Thermal resistance

Symbol	bol Parameter		Value (max).	Unit
В	Lunckion to coop	Per diode	0.55	
R _{th(j-c)}	Junction to case	Total	0.35	°C/W
R _{th(c)}	Coupling		0.1	

When diodes 1 and 2 are used simultaneously:

 Δ Tj(diode 1) = P(diode 1) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)}

Table 3. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _R ⁽¹⁾	Reverse leakage	T _j = 25° C	V _B = 300 V			200	μΑ
'R'	T _j = 125	T _j = 125° C	VR = 300 V		0.2	2	mA
V _E (2)	(2) Forward voltage drop	$T_j = 25^{\circ} \text{ C}$ $I_F = 100 \text{ A}$			1.20	V	
v _F , / Folward voltage drop	T _j = 150° C	1F = 100 A		0.8	0.95	V	

^{1.} Pulse test: $t_p = 5$ ms, $\delta < 2\%$

To evaluate the conduction losses use the following equation:

 $P = 0.75 \times I_{F(AV)} + 0.0020 I_{F^2(RMS)}$

Table 4. Dynamic characteristics (per diode)

Symbol	Parameter	Test conditions			Тур	Max	Unit
	Povorco rocovory		$I_F = 0.5 \text{ A}$ $I_{rr} = 0.25 \text{ A}$ $I_R = 1 \text{ A}$		55		
t _{rr}	Reverse recovery time		$I_F = 1 \text{ A} dI_F/dt = -50 \text{ A/}\mu\text{s}$ $V_R = 30 \text{ V}$			90	ns
I _{RM}	Current		$I_F = 100 \text{ A}$ $V_R = 200 \text{ V}$ $dI_F/dt = -200 \text{ A}/\mu\text{s}$			18	Α
S _{factor}	Softness factor	T _j = 125° C	$I_F = 100 \text{ A}$ $V_R = 200 \text{ V}$ $dI_F/dt = -200 \text{ A}/\mu\text{s}$		0.3		
t _{fr}	Forward recovery time	T _j = 25° C	$I_F = 100 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_{FR} = 1.1 \text{ x } V_{Fmax}$			1400	ns
V _{FP}	Forward recovery voltage	T _j = 25° C	I_F = 100 A dI_F/dt = 200 A/ μ s V_{FR} = 1.1 x V_{Fmax}			5	V

^{2.} Pulse test: $t_p = 380 \mu s$, $\delta < 2\%$

STTH20003TV Characteristics

Figure 1. Conduction losses versus average forward current (per diode)

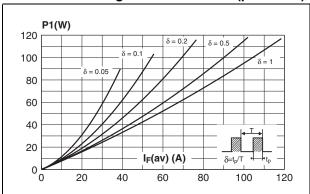


Figure 2. Forward voltage drop versus forward current (per diode)

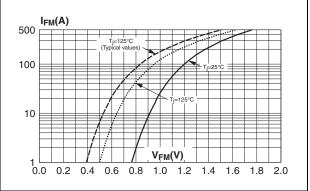


Figure 3. Relative variation of thermal impedance junction to case versus pulse duration

Figure 4. Peak reverse recovery current versus $\mathrm{dI}_{\mathrm{F}}/\mathrm{dt}$ (90% confidence, per diode)

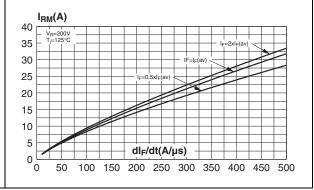


Figure 5. Reverse recovery time versus dI_F/dt (90% confidence, per diode)

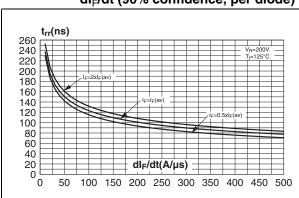
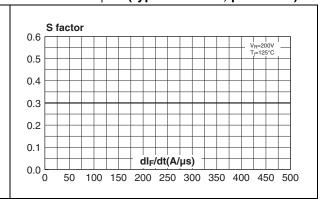



Figure 6. Softness factor (t_b/t_a) versus dl_F/dt (typical values, per diode)

Characteristics STTH20003TV

Figure 7. Relative variations of dynamic parameters versus junction temperature (reference: $T_i = 125^{\circ}$ C)

2.4 2.2 2.0 S factor 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 T_j(°C) 0.0 5 50 75 100

Figure 8. Transient peak forward voltage versus dl_F/dt (90% confidence, per diode)

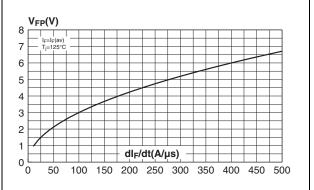
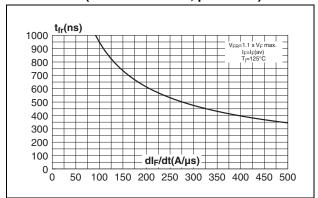
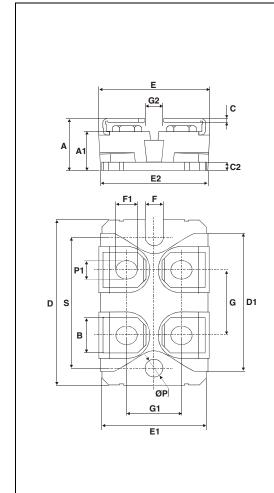



Figure 9. Forward recovery time versus dl_F/dt (90% confidence, per diode)


STTH20003TV Package information

2 Package information

Epoxy meets UL94, V0

Cooling method: by conduction (C)
Recommended torque value: 1.3 Nm
Maximum torque value: 1.5 Nm

Table 5. ISOTOP Dimensions

	Dimensions				
Ref.	Millim	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
Α	11.80	12.20	0.465	0.480	
A1	8.90	9.10	0.350	0.358	
В	7.8	8.20	0.307	0.323	
С	0.75	0.85	0.030	0.033	
C2	1.95	2.05	0.077	0.081	
D	37.80	38.20	1.488	1.504	
D1	31.50	31.70	1.240	1.248	
Е	25.15	25.50	0.990	1.004	
E1	23.85	24.15	0.939	0.951	
E2	24.80 typ.		0.976 typ.		
G	14.90	15.10	0.587	0.594	
G1	12.60	12.80	0.496	0.504	
G2	3.50	4.30	0.138	0.169	
F	4.10	4.30	0.161	0.169	
F1	4.60	5.00	0.181	0.197	
Р	4.00	4.30	0.157	0.69	
P1	4.00	4.40	0.157	0.173	
S	30.10	30.30	1.185	1.193	

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Ordering information

STTH20003TV

3 Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTH20003TV	STTH20003TV	ISOTOP	27 g (without screws)	10 (with screws)	Tube

4 Revision history

Date	Revision	Description of Changes
1999	2C	First issue
5-Sep-2006	2	Reformatted to current standards. Thermal resistance updated in Table 2.

Distributor of STMicroelectronics: Excellent Integrated System Limited

Datasheet of STTH20003TV1 - DIODE MODULE 300V 100A ISOTOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STTH20003TV

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

