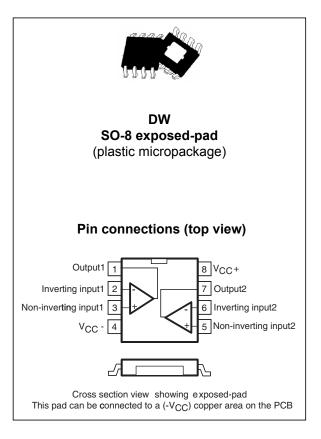


Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics TS982IDW


For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Datasheet - production data

Wide bandwidth, dual bipolar operational amplifier

Description

The TS982 device is a dual operational amplifier able to drive 200 mA down to voltages as low as 2.7 V.

The SO-8 exposed-pad package allows high current output at high ambient temperatures making it a reliable solution for automotive and industrial applications.

The TS982 device is stable with a unity gain.

Features

- Operating from V_{CC} = 2.5 V to 5.5 V
- 200 mA output current on each amplifier
- High dissipation package
- Rail-to-rail input and output
- Unity gain stable

Applications

- Hall sensor compensation coils
- Servo amplifiers
- Motor drivers
- Industrial
- Automotive

March 2014

Contents

1	Absolute maximum ratings and operating conditions					
2	electrical characteristics	4				
3	pplication information1	4				
	.1 Exposed-pad package description 1	4				
	.2 Exposed-pad electrical connection 1	4				
	.3 Thermal management benefits 1	5				
	.4 Thermal management guidelines 1	5				
	.5 Parallel operation 1	6				
4	Package information	7				
5	Ordering information1	9				
6	Revision history	20				

Absolute maximum ratings and operating conditions

1 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{in}	Input voltage	-0.3 V to V _{CC} +0.3 V	V
T _{oper}	Operating free-air temperature range	-40 to + 125	°C
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽²⁾	45	°C/W
R _{thjc}	Thermal resistance junction to case	16	°C/W
	Human body model (HBM) ⁽³⁾	2	kV
ESD	Charged device model (CDM) ⁽⁴⁾	1.5	kV
	Machine model (MM) ⁽⁵⁾	200	V
Latch-up	Latch-up immunity (all pins)	200	mA
	Lead temperature (soldering, 10 sec.)	250	°C
	Output short-circuit duration	See note ⁽⁶⁾	

Table 1.	Absolute	maximum	ratings	(AMR)
----------	----------	---------	---------	-------

1. All voltage values are measured with respect to the ground pin.

2. With two sides, two-plane PCB following the EIA/JEDEC JESD51-7 standard.

3. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

- 5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Short-circuits can cause excessive heating. Destructive dissipation can result from a short-circuit on one or two amplifiers simultaneously.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 5.5	V
V _{icm}	Common mode input voltage range	GND to V _{CC}	V
CL	Load capacitor $R_L < 100 \Omega$ $R_L > 100 \Omega$	400 100	pF

Table 2. Operating conditions

51

Table 3. Electrical characteristics for V_{CC+} = +5 V, V_{CC-} = 0 V, and T_{amb} = 25 °C (unless
otherwise specified)

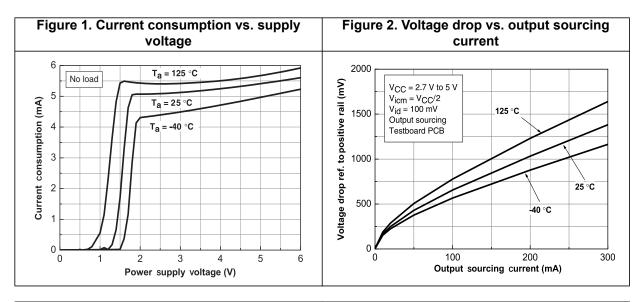
Symbol	Parameter	, Min.	Тур.	Max.	Unit
I _{CC}	Supply current - No input signal, no load T _{min} < T _{op} < T _{max}		5.5	7.2 7.2	mA
V _{IO}	Input offset voltage ($V_{icm} = V_{CC}/2$) T _{min} < T _{op} < T _{max}		1	5 7	mV
ΔV_{IO}	Input offset voltage drift		2		μV/°C
I _{IB}	Input bias current - V _{icm} = V _{CC} /2 T _{min} < T _{op} < T _{max}		200	500 500	nA
I _{IO}	Input offset current V _{icm} = V _{CC} /2		10		nA
V _{OH}	High level output voltage $R_L = 16 \Omega$ $R_L = 16 \Omega$, $T_{min} < T_{op} < T_{max}$ $I_{out} = 200 \text{ mA}$	4.2 4	4.4 4		V
	V _{CC} = 4.75 V, T = 125 °C, I _{out} = 25 mA	4.3			V
V _{OL}	Low level output voltage R _L = 16 Ω R _L = 16 Ω, T _{min} < T _{op} < T _{max} I _{out} = 200 mA		0.55 1	0.65 0.95	V
	V _{CC} = 4.75 V, T = 125 °C, I _{out} = 25 mA			0.45	V
A _{VD}	Large signal voltage gain $R_L = 16 \Omega$		95		dB
GBP	Gain bandwidth product $R_L = 32 \ \Omega$	1.35	2.2		MHz
CMR	Common mode rejection ratio		80		dB
SVR	Supply voltage rejection ratio		95		dB
SR	Slew rate, unity gain inverting R_L = 16 Ω	0.45	0.7		V/µs
Φ_{m}	Phase margin at unit gain $R_L = 16 $ Ω, $C_L = 400 $ pF		56		Degrees
G _m	Gain margin R _L = 16 Ω, C _L = 400 pF		18		dB
e _n	Equivalent input noise voltage F = 1 kHz		17		$\frac{nV}{\sqrt{Hz}}$
Crosstalk	Channel separation R _L = 16 Ω , F = 1 kHz		100		dB

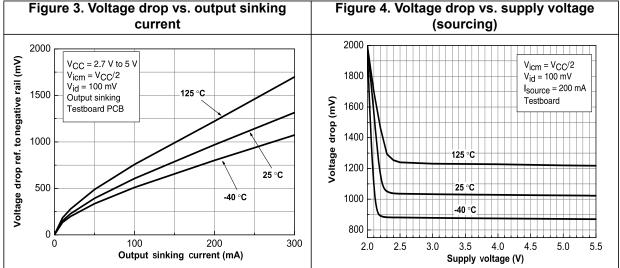
Electrical characteristics

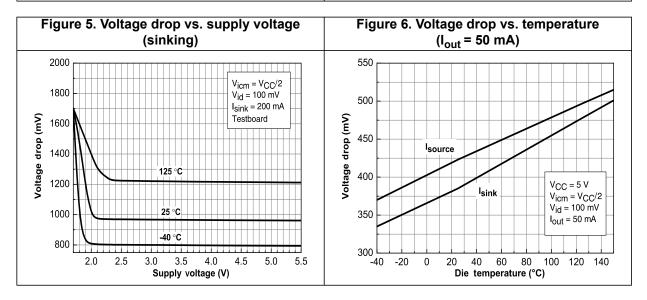
Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current - No input signal, no load T _{min} < T _{op} < T _{max}	5.3	7.2 7.2	mA	
V _{IO}	Input offset voltage ($V_{icm} = V_{CC}/2$) T _{min} < T _{op} < T _{max}		1	5 7	mV
ΔV_{IO}	Input offset voltage drift		2		µV/°C
I _{IB}	Input bias current - $V_{icm} = V_{CC}/2$ T _{min} < T _{op} < T _{max}		200	500 500	nA
I _{IO}	Input offset current $V_{icm} = V_{CC}/2$		10		nA
V _{OH}	High level output voltage $R_L = 16 \Omega$ $R_L = 16 \Omega$, $T_{min} < T_{op} < T_{max}$ $I_{out} = 200 \text{ mA}$	2.68 2.64	2.85 2.3		v
V _{OL}	Low level output voltage $R_L = 16 \Omega$ $R_L = 16 \Omega$, $T_{min} < T_{op} < T_{max}$ $I_{out} = 200 \text{ mA}$		0.45 1	0.52 0.65	v
A _{VD}	Large signal voltage gain R_L = 16 Ω		92		dB
GBP	Gain bandwidth product $R_L = 32 \Omega$	1.2	2		MHz
CMR	Common mode rejection ratio		75		dB
SVR	Supply voltage rejection ratio		95		dB
SR	Slew rate, unity gain inverting R_L = 16 Ω	0.45	0.7		V/µs
Φ_{m}	Phase margin at unit gain R _L = 16 Ω, C _L = 400 pF		57		Degrees
G _m	Gain margin R _L = 16 Ω , C _L = 400 pF		16		dB
e _n	Equivalent input noise voltage F = 1 kHz		17		<u>nV</u> √Hz
Crosstalk	Channel separation R _L = 16 Ω , F = 1 kHz		100		dB

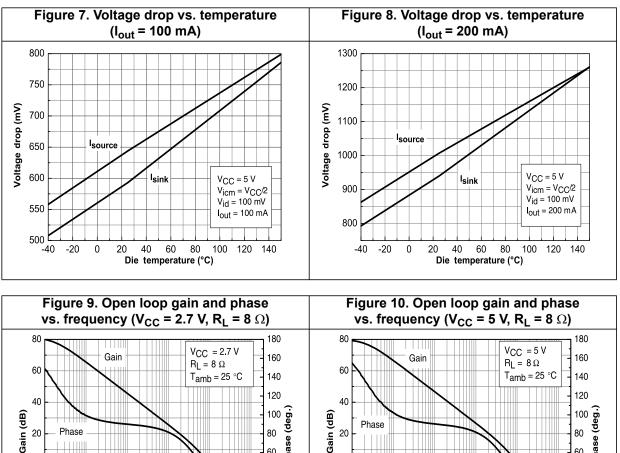
Table 4. Electrical characteristics for $V_{CC+} = +3.3 \text{ V}$, $V_{CC-} = 0 \text{ V}$, and $T_{amb} = 25 \text{ °C}$ (unless otherwise specified)⁽¹⁾

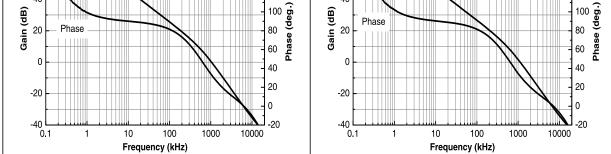
1. All electrical values are guaranteed by correlation with measurements at 2.7 V and 5 V.

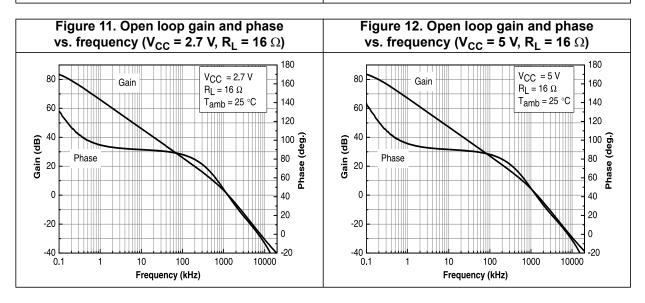

TS982


otherwise specified)						
Symbol	Parameter	Min.	Тур.	Max.	Unit	
I _{CC}	Supply current - No input signal, no load T _{min} < T _{op} < T _{ma}		5.3	6.4 6.4	mA	
V _{IO}	Input offset voltage ($V_{icm} = V_{CC}/2$) T _{min} < T _{op} < T _{max}	1	5 7	mV		
ΔV_{IO}	Input offset voltage drift		2		µV/°C	
I _{IB}	Input bias current - $V_{icm} = V_{CC}/2$ T _{min} < T _{op} < T _{max}		200	500 500	nA	
I _{IO}	Input offset current $V_{icm} = V_{CC}/2$		10		nA	
V _{OH}	High level output voltage $R_L = 16 \Omega$ $R_L = 16 \Omega$, $T_{min} < T_{op} < T_{max}$ $I_{out} = 20 \text{ mA}$	2.3 2.25	2.85 2.3		V	
V _{OL}	Low level output voltage $R_L = 16 \Omega$ $R_L = 16 \Omega$, $T_{min} < T_{op} < T_{max}$ $I_{out} = 200 \text{ mA}$		0.45 1	0.37 0.42	v	
A _{VD}	Large signal voltage gain R_L = 16 Ω		92		dB	
GBP	Gain bandwidth product $R_L = 32 \Omega$	1.2	2		MHz	
CMR	Common mode rejection ratio		75		dB	
SVR	Supply voltage rejection ratio		95		dB	
SR	Slew rate, unity gain inverting R_L = 16 Ω	0.45	0.7		V/µs	
Φ_{m}	Phase margin at unit gain $R_L = 16 \Omega$, $C_L = 400 pF$		57		Degrees	
G _m	Gain margin R _L = 16 Ω , C _L = 400 pF		16		dB	
e _n	Equivalent input noise voltage F = 1 kHz		17		$\frac{nV}{\sqrt{Hz}}$	
Crosstalk	Channel separation R _L = 16 Ω , F = 1 kHz		100		dB	


Table 5. Electrical characteristics for V_{CC} = +2.7 V, V_{CC} = 0 V, and T_{amb} = 25 °C (unless otherwise specified)

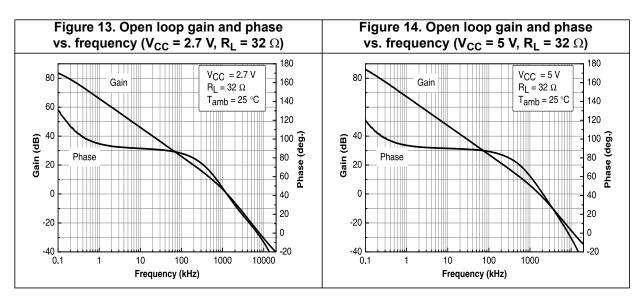


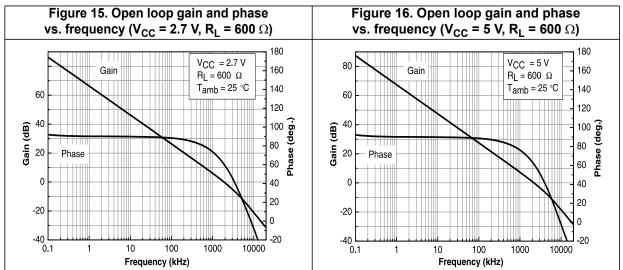


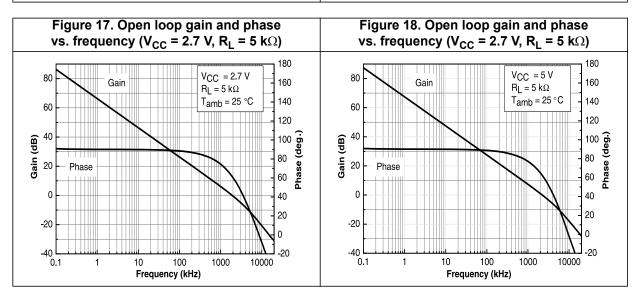


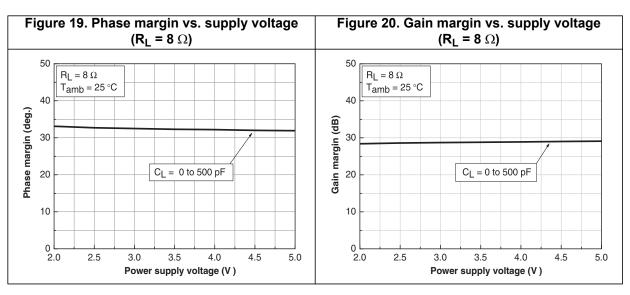
TS982

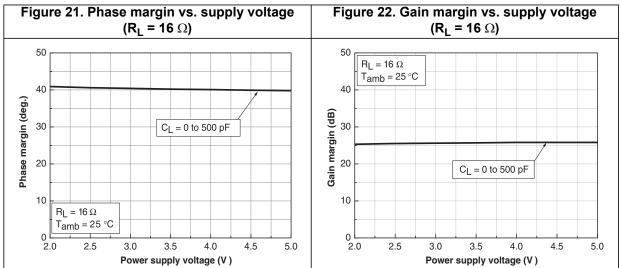
47/

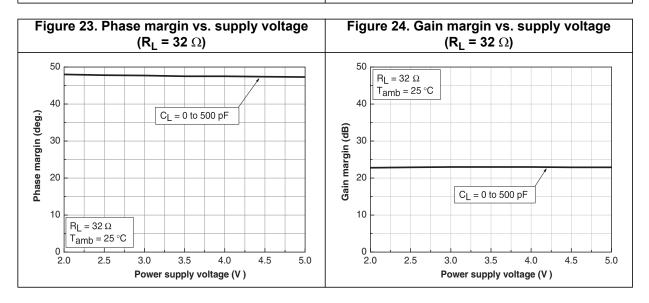




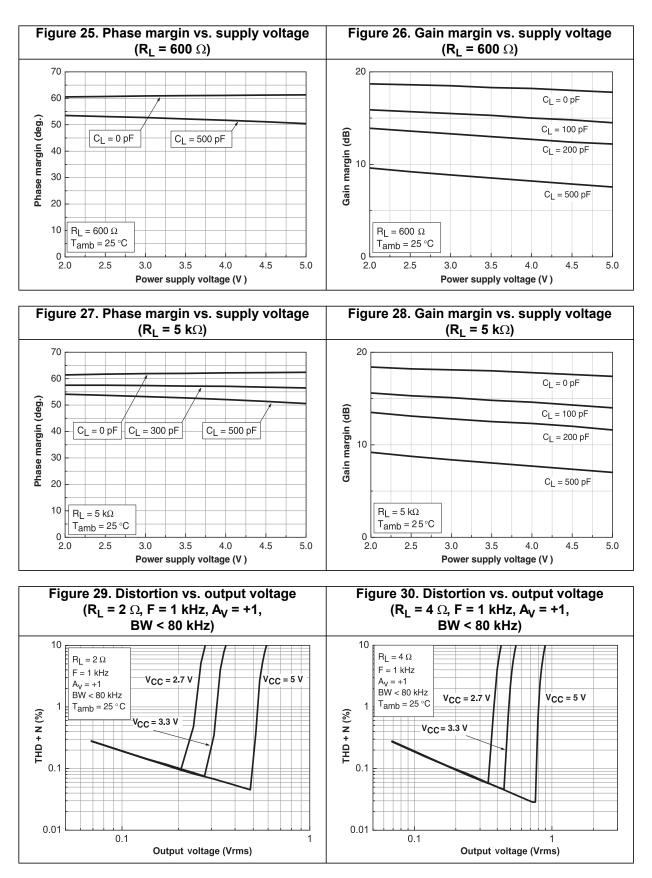


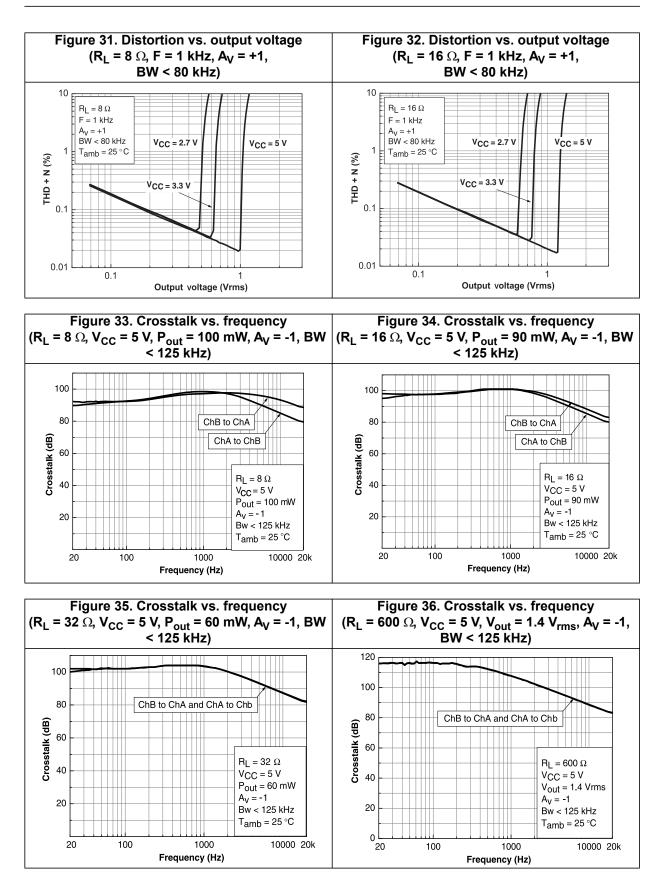


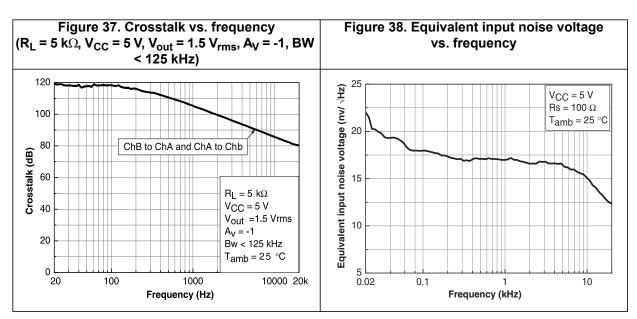




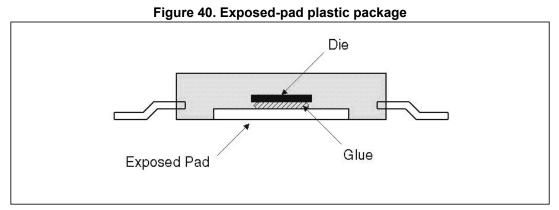
TS982



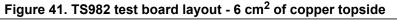


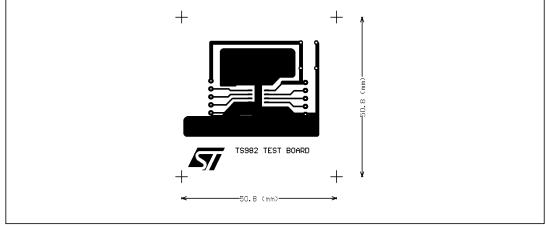

TS982


57


Application information

TS982


3 Application information


3.1 Exposed-pad package description

The dual operational amplifier TS982 is housed in an SO-8 exposed-pad plastic package. As shown in *Figure 40*, the die is mounted and glued on a lead frame. This lead frame is exposed as a thermal pad on the underside of the package. The thermal contact is direct with the die and therefore, offers an excellent thermal performance in comparison with the common SO packages. The thermal contact between the die and the exposed-pad is characterized using the parameter R_{thic} .

As 90% of the heat is removed through the pad, the thermal dissipation of the circuit is directly linked to the copper area soldered to the pad. In other words, the R_{thja} depends on the copper area and the number of layers of the printed circuit board under the pad.

3.2 Exposed-pad electrical connection

In the SO-8 exposed-pad package, the silicon die is mounted on the thermal pad (see *Figure 40*). The silicon substrate is not directly connected to the pad because of the glue. Therefore, the copper area of the exposed-pad must be connected to the substrate voltage (V_{CC}) pin 4.

Application information

3.3 Thermal management benefits

A good thermal design is important to maintain the temperature of the silicon junction below $T_j = 150$ °C as given in the absolute maximum ratings and also to maintain the operating power level.

Another effect of temperature is that the life expectancy of an integrated circuit decreases exponentially when operating at high temperature over an extended period of time. It is estimated that, the chip failure rate doubles for every 10 to 20 °C. This demonstrates that reducing the junction temperature is also important to improve the reliability of the amplifier.

Because of the high dissipation capability of the SO-8 exposed-pad package, the dual op amp TS982 has a lower junction temperature for high current applications in high ambient temperatures.

3.4 Thermal management guidelines

The following guidelines are a simple procedure to determine the PCB you should use in order to get the best from the SO-8 exposed-pad package:

1. Determine the total power P_{total} to be dissipated by the IC.

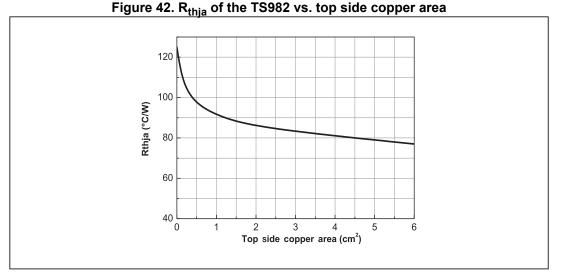
 $\begin{array}{l} \mathsf{P}_{total} = \mathsf{I}_{CC} \times \mathsf{V}_{CC} + \mathsf{V}_{drop1} \times \mathsf{I}_{out1} + \mathsf{V}_{drop2} \times \mathsf{I}_{out2} \\ \mathsf{I}_{CC} \times \mathsf{V}_{CC} \text{ is the DC power needed by the TS982 to operate with no load. Refer to } \\ \hline \mathsf{Figure 1: Current \ consumption \ vs. \ supply \ voltage \ on \ page \ 7 \ to \ determine \ \mathsf{I}_{CC} \ versus} \\ \mathsf{V}_{CC} \ and \ versus \ temperature. \end{array}$

The other terms are the power dissipated by the two operators to source the load. If the output signal can be assimilated to a DC signal, you can calculate the dissipated power using the voltage drop curves versus output current, supply voltage, and temperature (*Figure 2 on page 7* to *Figure 8 on page 8*).

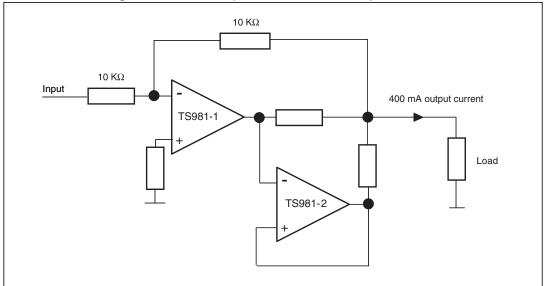
- 2. Specify the maximum operating temperature, (T_a) of the TS982.
- Specify the maximum junction temperature (T_j) at the maximum output power. As discussed above, T_j must be below 150 °C and as low as possible for reliability considerations.

Therefore, the maximum thermal resistance between junction and ambient R_{thja} is:

 $R_{thja} = (T_j - T_a)/P_{total}$


Different PCBs can give the right R_{thja} for a given application. *Figure 42* gives the R_{thja} of the SO-8 exposed pad versus the copper area of a top side PCB.

Application information


TS982

The ultimate R_{thja} of the package on a 4-layer PCB under natural convection conditions, is 45 °C/W by using two power planes and metallized holes.

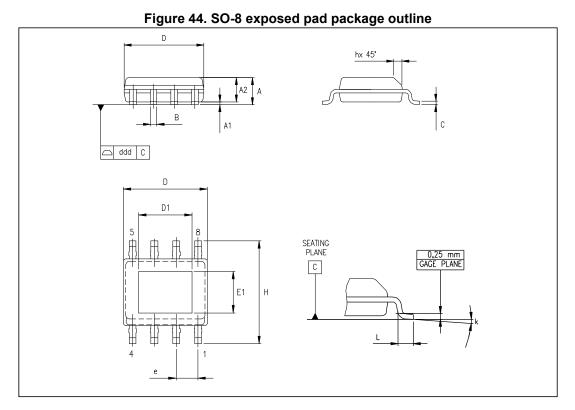
3.5 Parallel operation

Using the two amplifiers of the TS982 device in parallel mode provides a higher output current: 400 mA.

Figure 43. Parallel operation - 400 mA output current

Package information

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

Package information

TS982

			Dime	nsions		
Symbol	Millimeters					
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.053		0.069
A1	0.10		0.15	0.04		0.059
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
D1		3.1			0.122	
E	3.80		4.00	0.150		0.157
E1		2.41			0.095	
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k			8° (r	max.)		
ddd			0.1			0.04

Ordering information

5 Ordering information

Table 7. Order codes

Order code	Temperature range	Package	Packaging	Marking
TS982IDWT		SO-8 exposed-pad	Tape and reel	TS982I
TS982IYDWT ⁽¹⁾	-40 °C to +125 °C	SO-8 exposed-pad (automotive grade)	Tape and reel	TS982IY

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

Revision history

TS982

6 Revision history

Date	Revision	Changes
02-Jan-2004	1	First release.
01-Feb- 2004	2	Order codes modified on cover page.
01-Dec-2005	3	PPAP references inserted in the datasheet see <i>Table 5: Ordering information on page 19.</i>
02-Apr-2006	4	V_{OH} and V_{OL} limits (at V_{CC} = 4.75 V, T_{amb} = 125° C) added in <i>Table 3. on page 4.</i>
24-Oct-2006	5	Corrections to Section 3.3: Thermal management benefits and Section 3.4: Thermal management guidelines on page 15. Pad size added to package mechanical data table under SO-8 exposed pad package outline on page 18, and stand-off value corrected. Corrected value of V_{OH} for $V_{CC} = 2.7$ V.
5-Jun-2008	6	Moved ordering information from cover page to end of document. Added footnotes for ESD parameters in <i>Table 1: Absolute</i> <i>maximum ratings (AMR)</i> . Added footnote for automotive grade parts in <i>Table 7: Order</i> <i>codes</i> .
28-Aug-2012	7	Corrected numbering of tables, added conditions to titles of <i>Figure 9</i> to <i>Figure 37</i> , updated ECOPACK text, removed TS982IDW and TS982IYDW device from <i>Table 7</i> , minor corrections throughout document.
10-Mar-2014	8	Updated R _{thjc} in <i>Table 1: Absolute maximum ratings (AMR)</i> .

Table 8. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

