

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FMBA14

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FMBA14 - TRANS NPN DARL 30V 1.2A SSOT-6 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

FMBA14

FAIRCHILD SEMICONDUCTOR IM FMBA14 C2 E1 C1 **B**2 E2 pin #1 B1 SuperSOT™-6 Mark: .1N Dot denotes pin #1 NPN Multi-Chip Darlington Transistor This device is designed for applications requiring extremely high current gain at collector currents to 1.0 A. Sourced from Process 05. **Absolute Maximum Ratings*** $T_A = 25^{\circ}C$ unless otherwise noted Symbol 1/-1---11......

Symbol	Parameter	value	Units
V _{CES}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	10	V
lc	Collector Current - Continuous	1.2	А
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

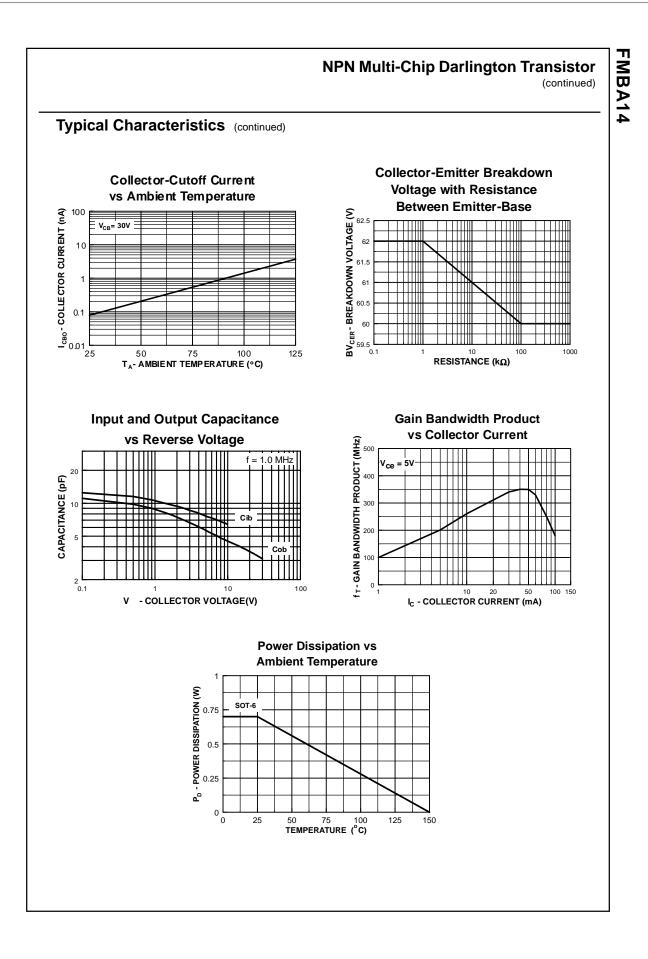
NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Symbol	Characteristic	Мах	Units
		FMBA14	
PD	Total Device Dissipation	700	mW
	Derate above 25°C	5.6	mW/°C
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	180	°C/W

 $T_A = 25^{\circ}C$ unless otherwise noted


© 1998 Fairchild Semiconductor Corporation

Electri	cal Characteristics TA=26	NPN Multi-Chip	Darlin	gton		sistor
Symbol	Parameter	5°C unless otherwise noted Test Conditions	Min	Тур	Max	Units
	RACTERISTICS			1		1
	Collector-Emitter Breakdown Voltage	I _C = 100 μA, I _B = 0	30			V
CBO	Collector-Cutoff Current	$V_{CB} = 30 \text{ V}, \text{ I}_{E} = 0$	50		100	nA
ЕВО	Emitter-Cutoff Current	$V_{EB} = 10 \text{ V}, \text{ I}_{C} = 0$			100	nA
-	ACTERISTICS*		1 1014	1	1	
h _{FE}	DC Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$	10K 20K			
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 100$ mA, $I_{\rm B} = 0.1$ mA			1.5	V
V _{BE(on)}	Base-Emitter On Voltage	I_{C} = 100 mA, V_{CE} = 5.0 V			2.0	V
h _{fe} *Pulse Test: F	Small Signal Current Gain Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz				
6) NI 250	Typical Pulsed Current Gain vs Collector Current	Collector-E ≳ Voltage vs			tion	
h _{Fe} - TYPICAL PULSED CURRENT GAIN (i) 000 000 0000	$V_{cE} = 5V$ 25 °C -40 °C 10001 $1_{c} - COLLECTOR CURRENT (A)$	$\sum_{i=1}^{n} Voltage vs$	25°C	122	5 °C	1000

FMBA14

The following are registered ar not intended to be an exhausti	nd unregistered trademarks Fairchild ve list of all such trademarks.	Semiconductor owns or is authoriz	ed to use and is
ACEx™	FASTr™	PowerTrench [®]	SyncFET™
Bottomless™	GlobalOptoisolator™	QFET™	TinyLogic™
CoolFET™	GTO™	QS™	UHC™
CROSSVOLT™	HiSeC™	QT Optoelectronics [™]	VCX™
DOME™	ISOPLANAR™	Quiet Series [™]	
E ² CMOS [™]	MICROWIRE™	SILENT SWITCHER [®]	
EnSigna™	OPTOLOGIC™	SMART START™	
FACT™	OPTOPLANAR™	SuperSOT [™] -3	
FACT Quiet Series™	PACMAN™	SuperSOT™-6	
FAST [®]	POP™	SuperSOT™-8	

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production