

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Fairchild Semiconductor](#)

[FST33X257QSP](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

May 2002
Revised July 2002**FST33X257****24:12 Multiplexer/Demultiplexer Bus Switch****General Description**

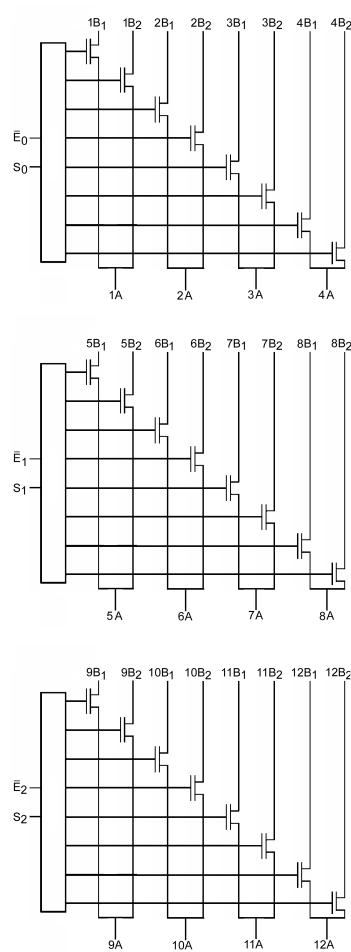
The Fairchild Switch FST33X257 is a 24:12 high-speed CMOS TTL-compatible multiplexer/demultiplexer bus switch. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When \overline{OE}_x is LOW, the select pin connects the A Port to the selected B Port output. When \overline{OE}_x is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Features

- 4Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level

Ordering Code:


Order Number	Package Number	Package Description
FST33X257QSP	MQA48A	48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

FST33X257 24:12 Multiplexer/Demultiplexer Bus Switch

FST33X257

Logic Diagram

Connection Diagram

S ₀	1	48	V _{CC}
1B ₁	2	47	\overline{OE}_0
1B ₂	3	46	4B ₁
2B ₁	4	45	4B ₂
2B ₂	5	44	4A
3B ₁	6	43	3B ₁
3B ₂	7	42	3B ₂
GND	8	41	3A
S ₁	9	40	V _{CC}
5B ₁	10	39	\overline{OE}_1
5B ₂	11	38	8B ₁
5A	12	37	8B ₂
6B ₁	13	36	8A
6B ₂	14	35	7B ₁
6A	15	34	7B ₂
GND	16	33	7A
S ₂	17	32	V _{CC}
9B ₁	18	31	\overline{OE}_2
9B ₂	19	30	12B ₁
9A	20	29	12B ₂
10B ₁	21	28	12A
10B ₂	22	27	11B ₁
10A	23	26	11B ₂
GND	24	25	11A

Pin Descriptions

Pin Name	Description
\overline{OE}_x	Bus Switch Enable
S _x	Select Input
A	Bus A
B ₁ -B ₂	Bus B

Truth Table

S _x	\overline{OE}_x	Function
X	H	Disconnect
L	L	A = B ₁
H	L	A = B ₂

FST33X257

Absolute Maximum Ratings (Note 1)

Supply Voltage (V_{CC})	-0.5V to +7.0V
DC Switch Voltage (V_S)	-0.5V to +7.0V
DC Input Voltage (V_{IN}) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	-50 mA
DC Output (I_{OUT}) Sink Current	128 mA
DC V_{CC}/GND Current (I_{CC}/I_{GND})	+/- 100 mA
Storage Temperature Range (T_{STG})	-65°C to +150 °C

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0V to 5.5V
Input Voltage (V_{IN})	0V to 5.5V
Output Voltage (V_{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T_A)	-40 °C to +85 °C

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{ mA}$
V_{IH}	HIGH Level Input Voltage	4.0–5.5	2.0			V	
V_{IL}	LOW Level Input Voltage	4.0–5.5			0.8	V	
I_I	Input Leakage Current	5.5			± 1.0	μA	$0 \leq V_{IN} \leq 5.5\text{V}$
		0			10		$V_{IN} = 5.5\text{V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	μA	$0 \leq A, B \leq V_{CC}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$V_{IN} = 0\text{V}, I_{IN} = 64 \text{ mA}$
		4.5		4	7	Ω	$V_{IN} = 0\text{V}, I_{IN} = 30 \text{ mA}$
		4.5		8	15	Ω	$V_{IN} = 2.4\text{V}, I_{IN} = 15 \text{ mA}$
		4.0		11	20	Ω	$V_{IN} = 2.4\text{V}, I_{IN} = 15 \text{ mA}$
I_{CC}	Quiescent Supply Current (Note 6)	5.5			3	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I_{CC} per Input (Note 7)	5.5			2.5	mA	One Input at 3.4V Other Inputs at V_{CC} or GND

Note 4: Typical values are at $V_{CC} = 5.0\text{V}$ and $T_A = +25^{\circ}\text{C}$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

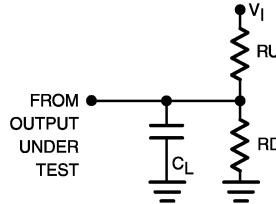
Note 6: Per V_{CC} pin.

Note 7: Per TTL driven input, control pins only.

FST33X257

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $C_L = 50 \text{ pF}$, $R_U = RD = 500\Omega$				Units	Conditions	Figure Number			
		$V_{CC} = 4.5 - 5.5\text{V}$		$V_{CC} = 4.0\text{V}$							
		Min	Max	Min	Max						
t_{PHL}, t_{PLH}	Propagation Delay Bus to Bus (Note 8)		0.25		0.25	ns	$V_I = \text{OPEN}$	Figures 1, 2			
	Propagation Delay, Select to Bus A	1.0	4.7		5.2						
t_{PZH}, t_{PZL}	Output Enable Time, Select to Bus B	1.0	5.2		5.7	ns	$V_I = 7\text{V}$ for t_{PZL} $V_I = \text{OPEN}$ for t_{PZH}	Figures 1, 2			
	Output Enable Time, \overline{OE} to Bus A, B	1.0	5.1		5.6						
t_{PHZ}, t_{PLZ}	Output Disable Time, Select to Bus B	1.0	5.2		5.5	ns	$V_I = 7\text{V}$ for t_{PLZ} $V_I = \text{OPEN}$ for t_{PHZ}	Figures 1, 2			
	Output Disable Time, Output Enable Time, \overline{OE} to Bus A, B	1.5	5.5		5.5						


Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

Symbol	Parameter		Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance		3		pF	$V_{CC} = 5.0\text{V}$
$C_{I/O}$	A Port	Input/Output Capacitance		7	pF	$V_{CC}, \overline{OE} = 5.0\text{V}$
	B Port		5		pF	

Note 9: $T_A = +25^\circ\text{C}$, $f = 1 \text{ MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω

Note: C_L includes load and stray capacitance

Note: Input PRR = 1.0 MHz, $t_W = 500 \text{ ns}$

FIGURE 1. AC Test Circuit

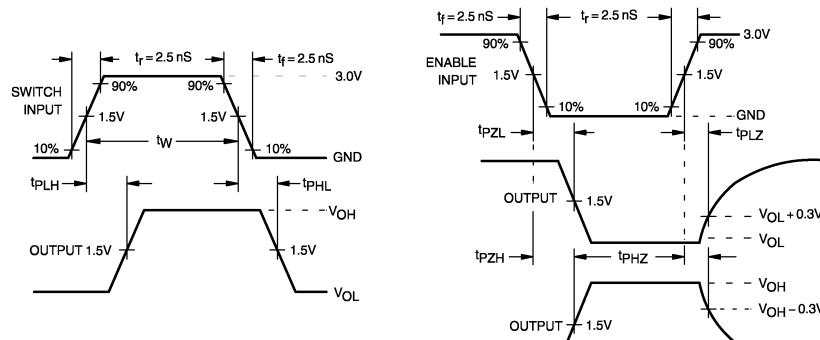
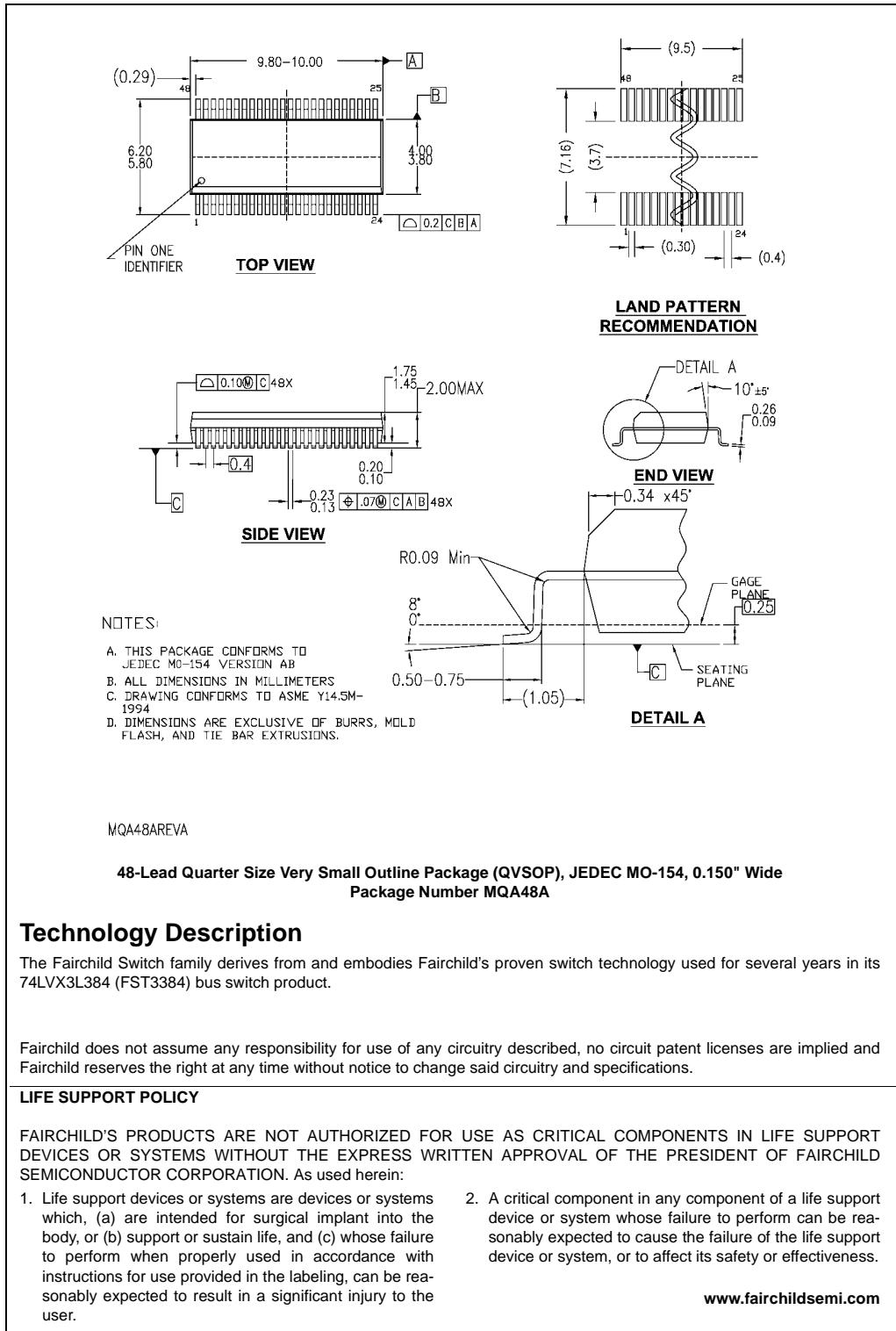



FIGURE 2. AC Waveforms

FST33X257 24:12 Multiplexer/Demultiplexer Bus Switch

