

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Avago Technologies US, Inc. MSA-0420

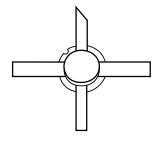
For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Avago Technologies US, Inc.: Excellent Integrated System Limited Datasheet of MSA-0420 - AMP MMIC SI BIPOLAR 200-MIL BEO Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

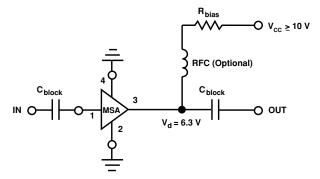
MSA-0420 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-0420 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50Ω Gain Block
- 3 dB Bandwidth: DC to 4.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- 16.0 dBm Typical P_{1 dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Metal/Beryllia Microstrip Package

200 mil BeO Package

Typical Biasing Configuration

MSA-0420 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Current	120 mA		
Power Dissipation ^[2,3]	850 mW		
RF Input Power	+13 dBm		
Junction Temperature	200°C		
Storage Temperature	-65 to 200°C		

ermal Resistance^[2,4]:

Notes: 1. Permanent damage may occur if any of these limits are exceeded.

2. T_{CASE} = 25°C.

3. Derate at 25 mW/°C for $T_C > 166$ °C.

4. The small spot size of this technique results in a higher, though more accurate determination of q_{ic} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I $_{d}$ $=$ 90 mA, Z $_{0}$ $=$ 50 Ω			Min.	Тур.	Max.
Gp	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB	7.5	8.5	9.5
ΔG_P	Gain Flatness	f = 0.1 to 2.5 GHz	dB		±0.6	±1.0
f _{3 dB}	3 dB Bandwidth		GHz		4.3	
VSWR —	Input VSWR	f = 0.1 to 2.5 GHz			1.7:1	
	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	14.0	16.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz dBm 30.0				
t _D	Group Delay	f = 1.0 GHz	psec		140	
V _d	Device Voltage		V	5.7	6.3	6.9
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 40 to 110 mA. Typical performance as a function of current is on the following page.

 $_{ic} = 40^{\circ} C/W$

Freq.	S ₁₁		S ₂₁			S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	
0.1	.25	177	8.6	2.70	175	-16.4	.151	1	.03	-30	
0.2	.25	173	8.6	2.69	170	-16.5	.150	1	.04	-59	
0.4	.24	167	8.6	2.69	159	-16.5	.150	-1	.07	-79	
0.6	.22	160	8.5	2.67	149	-16.4	.152	-2	.10	-92	
0.8	.21	154	8.5	2.66	139	-16.3	.154	-2	.13	-99	
1.0	.20	148	8.3	2.60	129	-16.1	.156	-3	.16	-109	
1.5	.14	136	8.1	2.54	104	-15.6	.166	-4	.22	-124	
2.0	.10	136	7.9	2.48	80	-14.8	.181	-6	.25	-139	
2.5	.08	161	7.4	2.34	62	-14.3	.193	-5	.28	-142	
3.0	.10	178	7.0	2.24	39	-13.7	.206	-11	.31	-15	
3.5	.13	176	6.6	2.13	18	-12.6	.233	-18	.34	-167	
4.0	.14	163	5.9	1.97	-3	-11.9	.253	-25	.36	-17	
4.5	.14	133	5.3	1.83	-23	-11.3	.273	-33	.37	174	
5.0	.16	91	4.5	1.69	-343	-10.5	.299	-43	.37	162	

MSA-0420 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $I_d = 90 \text{ mA}$)

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

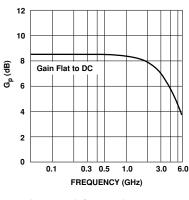


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}$ C, $I_d = 90$ mA.

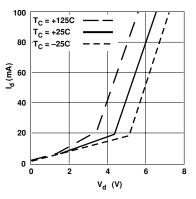


Figure 2. Device Current vs. Voltage.

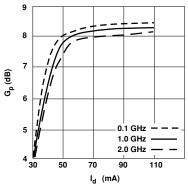
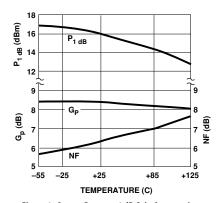
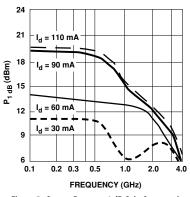
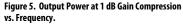
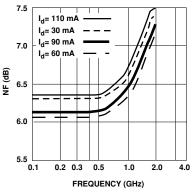
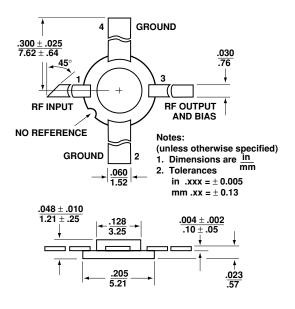





Figure 3. Power Gain vs. Current.




Figure 6. Noise Figure vs. Frequency.

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0420	100	Bulk

200 mil BeO Package Dimensions

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-2752EN AV02-1225EN May 14, 2008

