

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Maxim Integrated](#)

[MAX16008TP+](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

General Description

The MAX16008/MAX16009 are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher level of system reliability by monitoring multiple supply voltages and providing a fault signal when any of the voltages exceed their overvoltage thresholds or fall below their undervoltage thresholds.

These devices offer user-adjustable thresholds that allow voltages to be monitored down to 0.4V. These devices allow the upper and lower trip thresholds of each window detector to be set externally with the use of three external resistors.

Each monitored threshold has an independent open-drain output for signaling a fault condition. The outputs can be wire OR'd together to provide a single fault output. The open-drain outputs are internally pulled up with a 30µA current, but can be externally driven to other voltage levels for interfacing to other logic levels.

Both devices feature a margin input to disable the outputs during margin testing or any other time after power-up operations. The MAX16009 offers a reset output that deasserts after a reset timeout period after all voltages are within their threshold specifications. The reset timeout is internally set to 140ms (min), but can be externally adjusted to other reset timeouts using an external capacitor. In addition, the MAX16009 offers a manual reset input.

All devices are offered in a 4mm x 4mm TQFN package and are fully specified from -40°C to +125°C.

Applications

Storage Equipment

Networking/Telecommunications Equipment

Multivoltage ASICs

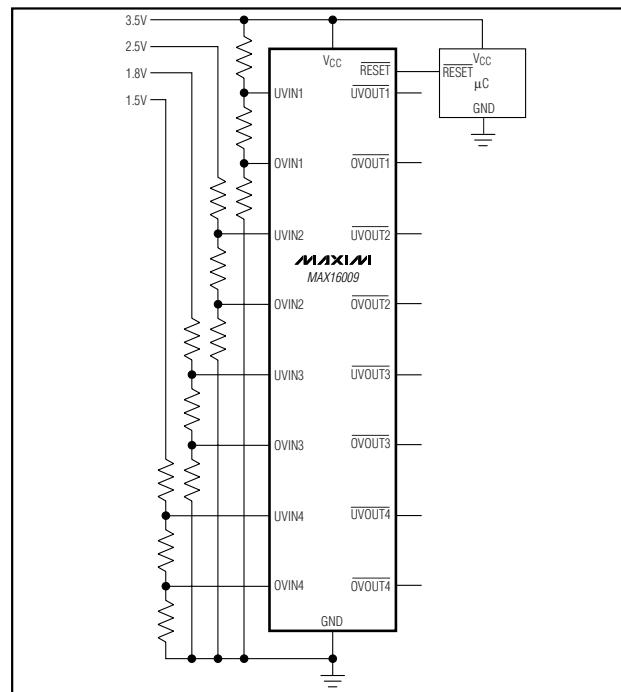
Servers

Pin Configurations and Selector Guide appear at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Features

- ◆ Monitor Four Undervoltage/Oversupply Conditions
- ◆ 1.5% Accuracy Over Temperature
- ◆ User-Adjustable Thresholds (Down to 0.4V)
- ◆ Open-Drain Outputs with Internal Pullups Reduce the Number of External Components
- ◆ Manual Reset Input (MAX16009)
- ◆ Margin Enable Input
- ◆ Fixed or Adjustable RESET Timeout (MAX16009)
- ◆ Guaranteed Correct Output Logic State Down to $V_{CC} = 1V$
- ◆ Fully Specified from -40°C to +125°C
- ◆ Small, 4mm x 4mm TQFN Package


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX16008TP+	-40°C to +125°C	20 TQFN
MAX16009TG+	-40°C to +125°C	24 TQFN

+Denotes a lead(Pb)-free/RoHS-compliant package.

For tape-and-reel, add a "T" after the "+." Tape-and-reel are offered in 2.5k increments.

Typical Operating Circuit

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

ABSOLUTE MAXIMUM RATINGS

V_{CC}, \overline{OVOUT}_- , \overline{UVOUT}_- , \overline{RESET}_- ,
 U_{VIN}-, O_{VIN} to GND -0.3V to +6V
 MARGIN, \overline{MR} , TOL, SRT to GND -0.3V to (V_{CC} + 0.3V)
 Input/Output Current
 (\overline{RESET}_- , MARGIN, SRT, \overline{MR} , \overline{UVOUT}_- , \overline{OVOUT}_-) ± 20 mA
 Continuous Power Dissipation (T_A = +70°C)
 20-Pin Thin QFN (derate 16.9mW/°C above +70°C) 1355mW
 24-Pin Thin QFN (derate 16.9mW/°C above +70°C) 1666mW

Operating Temperature Range -40°C to +125°C
 Junction Temperature +150°C
 Storage Temperature Range -65°C to +150°C
 Lead Temperature (soldering, 10s) +300°C
 Soldering Temperature (reflow) +260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.0V to 5.5V, T_A = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V, T_A = +25°C.)
 (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	V _{CC}	(Note 2)	1.0	5.5		V
Supply Current (Note 3)	I _{CC}	V _{CC} = 3.3V, outputs deasserted		45	65	μA
		V _{CC} = 5V, outputs deasserted		45	70	
UVLO (Undervoltage Lockout)	V _{UVLO}	V _{CC} rising	1.62	1.8	1.98	V
UVIN /OVIN						
Adjustable Threshold (U _{VIN} _ Falling/O _{VIN} _ Rising)	V _{TH}		0.388	0.394	0.400	V
U _{VIN} /O _{VIN} Hysteresis	V _{THL_HYS}	U _{VIN} _ falling/O _{VIN} _ rising (percentage of the threshold)		0.5		% V _{TH}
U _{VIN} /O _{VIN} Input Current	I _{IB}		-100		+100	nA
RESET						
Reset Timeout	t _{RP}	SRT = V _{CC}	140	200	280	ms
		C _{SRT} = 1500pF (Note 4)	2.43	3.09	3.92	
		C _{SRT} = 100pF		0.206		
		C _{SRT} = open		0.05		
SRT Ramp Current	I _{SRT}	V _{SRT} = 0V	460	600	740	nA
SRT Threshold	V _{TH_SRT}		1.173	1.235	1.293	V
SRT Hysteresis				100		mV
U _{VIN} /O _{VIN} to Reset Delay	t _{RD}	U _{VIN} _ falling/O _{VIN} _ rising		20		μs

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 2.0V to 5.5V, T_{OL} = GND, T_A = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V, T_A = +25°C.)
 (Note 1)

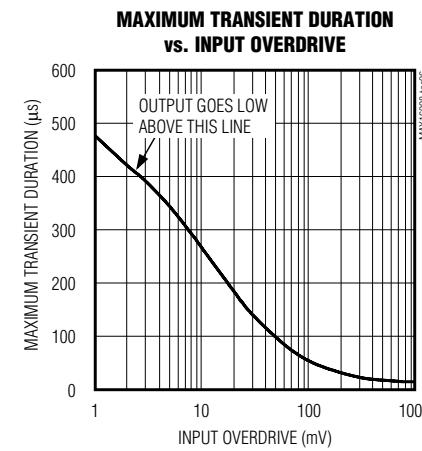
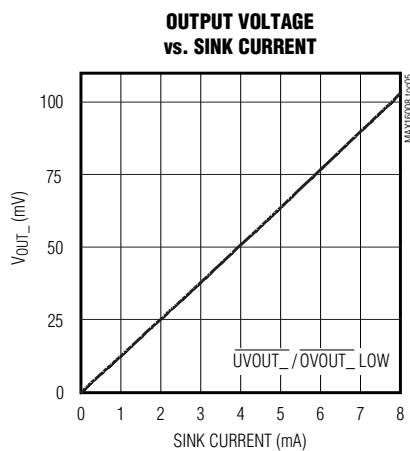
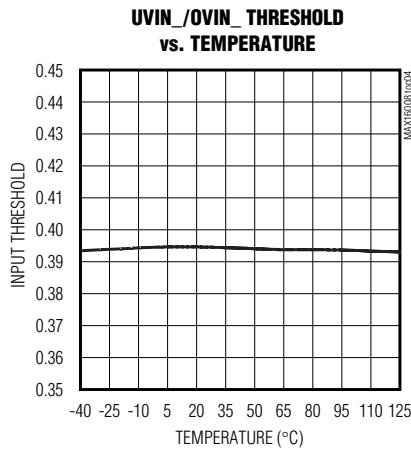
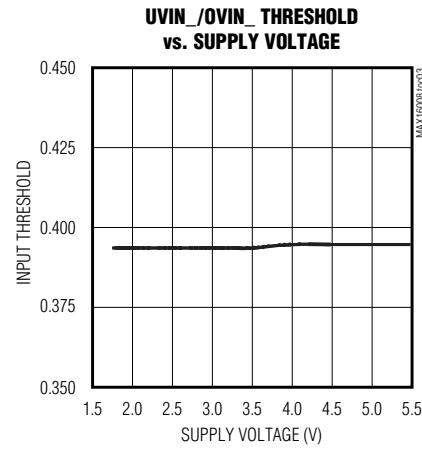
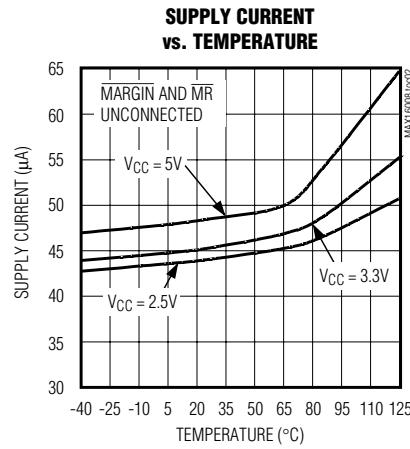
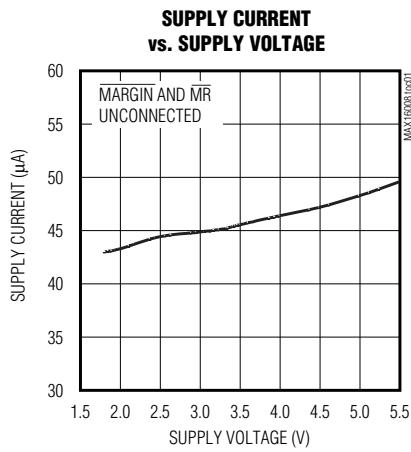
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RESET Output-Voltage Low	V _{OL}	V_{CC} = 3.3V, I_{SINK} = 10mA, \overline{RESET} asserted		0.30		V
		V_{CC} = 2.5V, I_{SINK} = 6mA, \overline{RESET} asserted		0.30		
		V_{CC} = 1.2V, I_{SINK} = 50µA, \overline{RESET} asserted		0.30		
RESET Output-Voltage High	V _{OH}	$V_{CC} \geq 2.0V$, I_{SOURCE} = 6µA, \overline{RESET} deasserted	0.8 x V_{CC}			V
MR Input-Voltage Low	V _{IL}			0.3 x V_{CC}		V
MR Input-Voltage High	V _{IH}		0.7 x V_{CC}			V
MR Minimum Pulse Width			1			µs
MR Glitch Rejection			100			ns
MR to \overline{RESET} Delay			200			ns
MR Pullup Resistance			12	20	28	kΩ
OUTPUTS (UVOUT_ /OVOUT_)						
UVOUT_ /OVOUT_ Output-Voltage Low	V _{OL}	V_{CC} = 3.3V, I_{SINK} = 2mA		0.30		V
		V_{CC} = 2.5V, I_{SINK} = 1.2mA		0.30		
OVOUT_ /OVOUT_ Output-Voltage High	V _{OH}	$V_{CC} \geq 2.0V$, I_{SOURCE} = 6µA	0.8 x V_{CC}			V
UVIN_ /OVIN_ to UVOUT_ /OVOUT_ Propagation Delay	t _D	(V_{TH} - 100mV) to (V_{TH} + 100mV)		20		µs
DIGITAL LOGIC						
TOL Input-Voltage Low	V _{IL}			0.3 x V_{CC}		V
TOL Input-Voltage High	V _{IH}		0.7 x V_{CC}			V
TOL Input Current		$TOL = V_{CC}$		100		nA
MARGIN Input-Voltage Low	V _{IL}			0.3 x V_{CC}		V
MARGIN Input-Voltage High	V _{IH}		0.7 x V_{CC}			V
MARGIN Pullup Resistance		Pulled up to V_{CC}	12	20	28	kΩ
MARGIN Delay Time	t _{MD}	Rising or falling (Note 5)		50		µs

Note 1: Devices are tested at T_A = +25°C and guaranteed by design for T_A = T_{MIN} to T_{MAX}.

Note 2: The outputs are guaranteed to be in the correct logic state down to V_{CC} = 1V.

Note 3: Measured with MR and MARGIN unconnected.

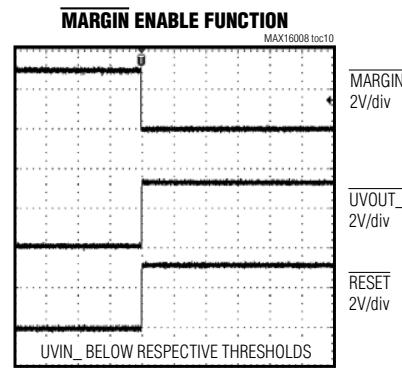
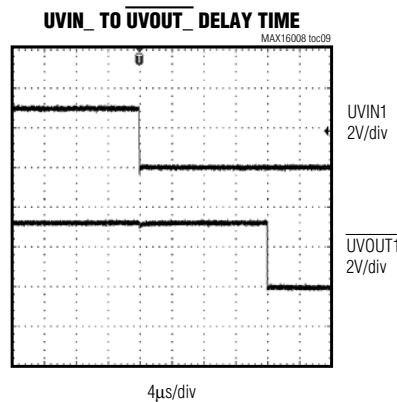
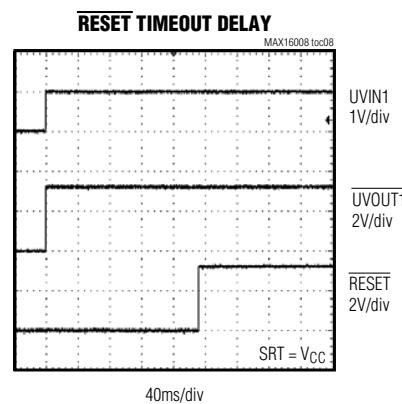
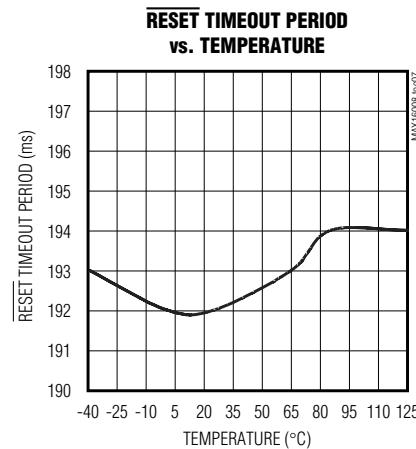
Note 4: The minimum and maximum specifications for this parameter are guaranteed by using the worse case of the SRT current and SRT threshold specifications. Do not set the reset timeout period to more than 1.12s.







Note 5: Amount of time required for logic to lock/unlock outputs from margin testing

MAX16008/MAX16009

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Typical Operating Characteristics





($V_{CC} = 3.3V$, $T_A = +25^\circ C$, unless otherwise noted.)

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Typical Operating Characteristics (continued)

($V_{CC} = 3.3V$, $T_A = +25^\circ C$, unless otherwise noted.)

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Pin Description

PIN		NAME	FUNCTION
MAX16008	MAX16009		
1	1	UVIN3	Undervoltage Threshold Input 3. When the voltage on UVIN3 falls below its threshold, <u>UVOUT3</u> asserts low.
2	2	OVIN3	Overvoltage Threshold Input 3. When the voltage on OVIN3 rises above its threshold, <u>OVOUT3</u> asserts low.
3	3	UVIN4	Undervoltage Threshold Input 4. When the voltage on UVIN4 falls below its threshold, <u>UVOUT4</u> asserts low.
4	4	OVIN4	Overvoltage Threshold Input 4. When the voltage on OVIN4 rises above its threshold, <u>OVOUT4</u> asserts low.
5	6	GND	Ground
6, 20	7, 24	V _{CC}	Unmonitored Power to the Device
7	8	<u>UVOUT3</u>	Active-Low Undervoltage Output 3. When the voltage at UVIN3 falls below its threshold, <u>UVOUT3</u> asserts low and stays asserted until the voltage at UVIN3 exceeds its threshold. The open-drain output has a 30µA internal pullup to V _{CC} .
8	9	<u>OVOUT3</u>	Active-Low Overvoltage Output 3. When the voltage at OVIN3 rises above its threshold, <u>OVOUT3</u> asserts low and stays asserted until the voltage at OVIN3 falls below its threshold. The open-drain output has a 30µA internal pullup to V _{CC} .
9	10	<u>UVOUT4</u>	Active-Low Undervoltage Output 4. When the voltage at UVIN4 falls below its threshold, <u>UVOUT4</u> asserts low and stays asserted until the voltage at UVIN4 exceeds its threshold. The open-drain output has a 30µA internal pullup to V _{CC} .
10	11	<u>OVOUT4</u>	Active-Low Overvoltage Output 4. When the voltage at OVIN4 rises above its threshold, <u>OVOUT4</u> asserts low and stays asserted until the voltage at OVIN4 falls below its threshold. The open-drain output has a 30µA internal pullup to V _{CC} .
11	14	<u>MARGIN</u>	Active-Low Margin Enable Input. Pull <u>MARGIN</u> low to deassert all outputs (go into high state) regardless of the voltage at any monitored input.
12	15	<u>OVOUT2</u>	Active-Low Overvoltage Output 2. When the voltage at OVIN2 rises above its threshold, <u>OVOUT2</u> asserts low and stays asserted until the voltage at OVIN2 falls below its threshold. The open-drain output has a 30µA internal pullup to V _{CC} .

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Pin Description (continued)

PIN		NAME	FUNCTION
MAX16008	MAX16009		
13	16	UVOUT2	Active-Low Undervoltage Output 2. When the voltage at UVIN2 falls below its threshold, $\overline{\text{UVOUT2}}$ asserts low and stays asserted until the voltage at UVIN2 exceeds its threshold. The open-drain output has a 30 μA internal pullup to V _{CC} .
14	17	OVOUT1	Active-Low Overvoltage Output 1. When the voltage at OVIN1 rises above its threshold, $\overline{\text{OVOUT1}}$ asserts low and stays asserted until the voltage at OVIN1 falls below its threshold. The open-drain output has a 30 μA internal pullup to V _{CC} .
15	18	UVOUT1	Active-Low Undervoltage Output 1. When the voltage at UVIN1 falls below its threshold, $\overline{\text{UVOUT1}}$ asserts low and stays asserted until the voltage at UVIN1 exceeds its threshold. The open-drain output has a 30 μA internal pullup to V _{CC} .
16	20	UVIN1	Undervoltage Threshold Input 1. When the voltage on UVIN1 falls below its threshold, $\overline{\text{UVOUT1}}$ asserts low.
17	21	OVIN1	Overvoltage Threshold Input 1. When the voltage on OVIN1 rises above its threshold, $\overline{\text{OVOUT1}}$ asserts low.
18	22	UVIN2	Undervoltage Threshold Input 2. When the voltages on UVIN2 falls below its threshold, $\overline{\text{UVOUT2}}$ asserts low.
19	23	OVIN2	Overvoltage Threshold Input 2. When the voltage on OVIN2 rises above its threshold, $\overline{\text{OVOUT2}}$ asserts low.
—	5	N.C.	Not Internally Connected
—	12	MR	Active-Low Manual Reset Input. Pull $\overline{\text{MR}}$ low to assert $\overline{\text{RESET}}$ low. $\overline{\text{RESET}}$ remains low for the reset timeout period after $\overline{\text{MR}}$ is deasserted. $\overline{\text{MR}}$ is pulled up to V _{CC} through a 20k Ω resistor.
—	13	SRT	Set Reset Timeout Input. Connect a capacitor from SRT to GND to set the reset timeout period. The reset timeout period can be calculated as follows: Reset Timeout (s) = $2.06 \times 10^6 (\Omega) \times C_{\text{SRT}} (\text{F})$. Do not set the reset timeout period to more than 1.12s. For the internal timeout period of 140ms (min), connect SRT to V _{CC} .
—	19	RESET	Active-Low Reset Output. $\overline{\text{RESET}}$ asserts low when the voltage on any of the UVIN __ inputs falls below their respective thresholds, the voltage on any of the OVIN __ inputs goes above its respective threshold, or $\overline{\text{MR}}$ is asserted. $\overline{\text{RESET}}$ remains asserted for at least the minimum reset timeout after all monitored UVIN __ inputs exceed their respective thresholds, all OVIN __ inputs fall below their respective thresholds, and $\overline{\text{MR}}$ is deasserted. This open-drain output has a 30 μA internal pullup.
—	—	EP	Exposed Pad. EP is internally connected to GND. Connect EP to the ground plane to provide a low thermal resistance path from the IC junction to the PC board. Do not use as the only electrical connection to GND.

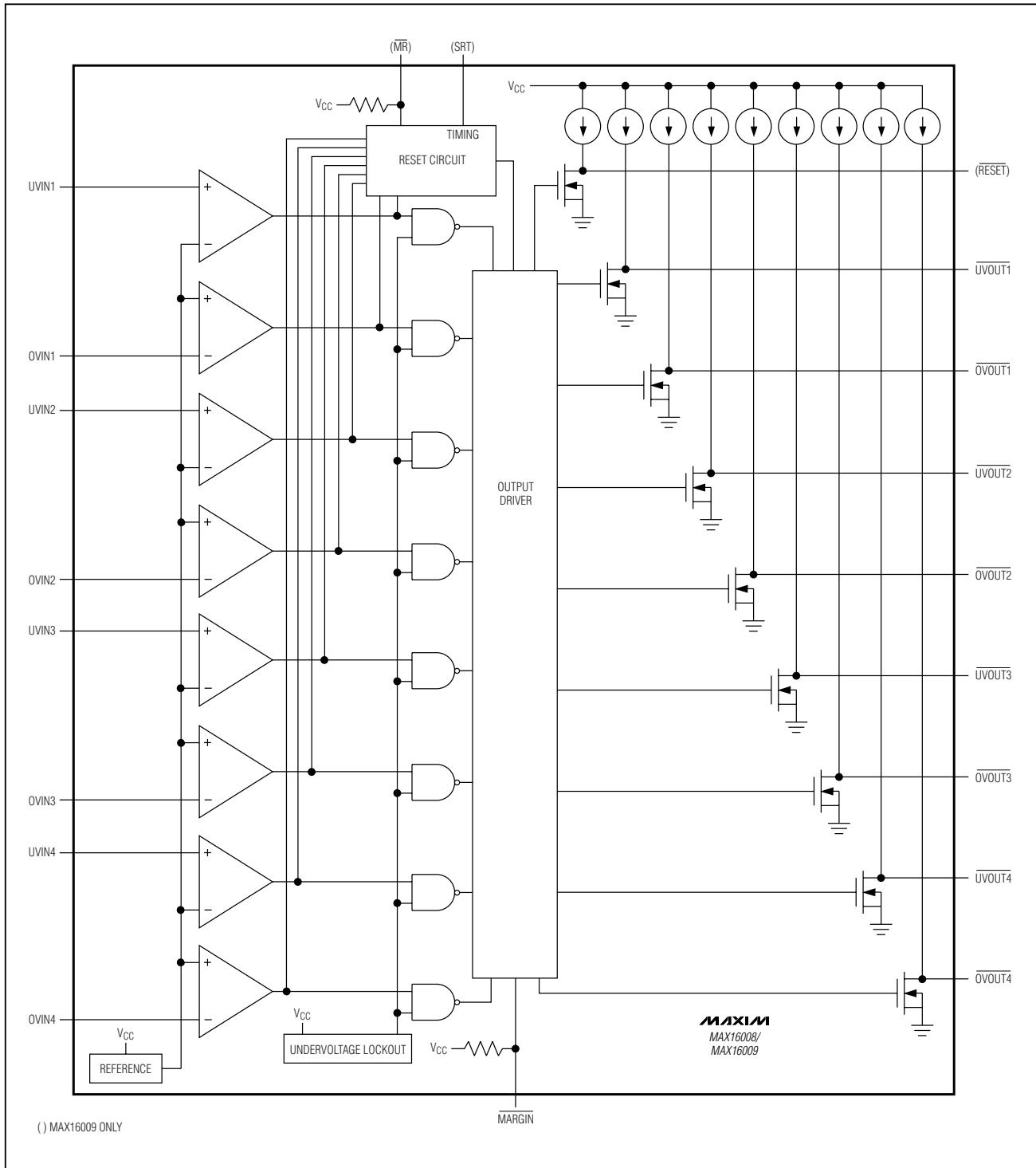


Figure 1. Functional Diagram

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Detailed Description

The MAX16008/MAX16009 are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher level of system reliability by monitoring multiple supply voltages and providing a fault signal when any of the voltages exceeds its overvoltage threshold or falls below its undervoltage threshold.

These devices offer user-adjustable thresholds that allow voltages to be monitored down to 0.4V. The devices allow the upper and lower trip thresholds of each window detector to be set externally with the use of three external resistors.

Each monitored threshold has an independent open-drain output for signaling a fault condition. The outputs can be wire OR'd together to provide a single fault output. The open-drain outputs are internally pulled up with a 30 μ A current, but can be externally driven to other voltage levels for interfacing to other logic levels.

Both devices feature a margin input to disable the outputs during margin testing or any other time after power-up operations. The MAX16009 offers a reset output that deasserts after a reset timeout period after all voltages are within their threshold specification. The reset timeout is internally set to 140ms (min), but can be externally adjusted to other reset timeouts using an external capacitor. In addition, the MAX16009 offers a manual reset input.

Applications Information

Voltage Monitoring

The MAX16008/MAX16009 feature undervoltage and overvoltage comparators for window detection (see Figure 2). \overline{UVOUT}_- / \overline{OVOUT}_- deassert high when the monitored voltage is within the "selected window." When the monitored voltage falls below the lower limit of the window ($V_{TRIPLOW}$), \overline{UVOUT}_- asserts low; or if the monitored voltage exceeds the upper limit ($V_{TRIPHIGH}$), \overline{OVOUT}_- asserts low. The application in Figure 2 shows the MAX16008/MAX16009 enabling the DC-DC converter when the monitored voltage is in the selected window.

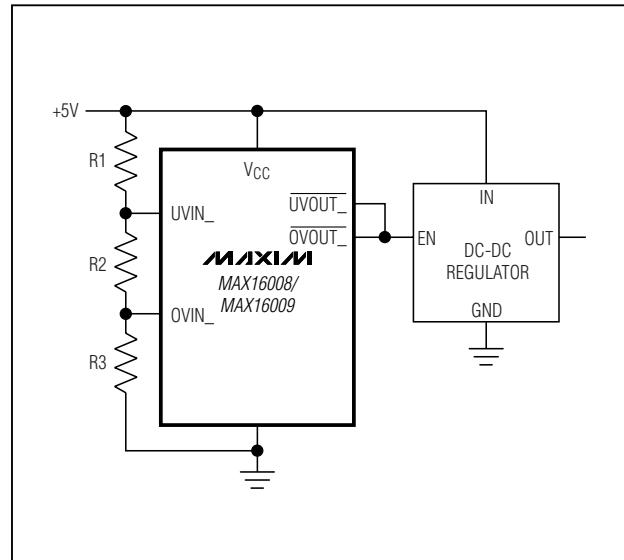


Figure 2. MAX16008/MAX16009 Monitor Circuit

The resistor values R1, R2, and R3 can be calculated as shown:

$$V_{TRIPLOW} = V_{TH} \left(\frac{R_{TOTAL}}{R2 + R3} \right)$$

$$V_{TRIPHIGH} = V_{TH} \left(\frac{R_{TOTAL}}{R3} \right)$$

where $R_{TOTAL} = R1 + R2 + R3$.

Use the following steps to determine the values for R1, R2, and R3:

- 1) Choose a value for R_{TOTAL} , the sum of R1, R2, and R3. Because the MAX16008/MAX16009 have very low input bias current (2nA typ), R_{TOTAL} can be up to 2M Ω . Large-value resistors help minimize power consumption. Lower-value resistors can be used to maintain overall accuracy.

MAX16008/MAX16009

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Use the following formulas to calculate the error:

$$E_{UV} (\%) = \frac{I_B \left(R_1 + \frac{R_1 R_3}{R_2 + R_3} \right)}{V_{TRIPLLOW}} \times 100$$

$$E_{OV} (\%) = \frac{I_B (R_2 + (2 \times R_1))}{V_{TRIPHIGH}} \times 100$$

where E_{UV} and E_{OV} are the undervoltage and overvoltage error (in %), respectively.

- 2) Calculate R_3 based on R_{TOTAL} and the desired upper trip point:

$$R_3 = \frac{V_{TH} \times R_{TOTAL}}{V_{TRIPHIGH}}$$

- 3) Calculate R_2 based on R_{TOTAL} , R_3 , and the desired lower trip point:

$$R_2 = \frac{V_{TH} \times R_{TOTAL}}{V_{TRIPLLOW}} - R_3$$

- 4) Calculate R_1 based on R_{TOTAL} , R_3 , and R_2 :

$$R_1 = R_{TOTAL} - R_2 - R_3$$

Overvoltage Shutdown

The MAX16008/MAX16009 are ideal for overvoltage-shutdown applications. Figure 3 shows a typical circuit for this application using a pass p-channel MOSFET.

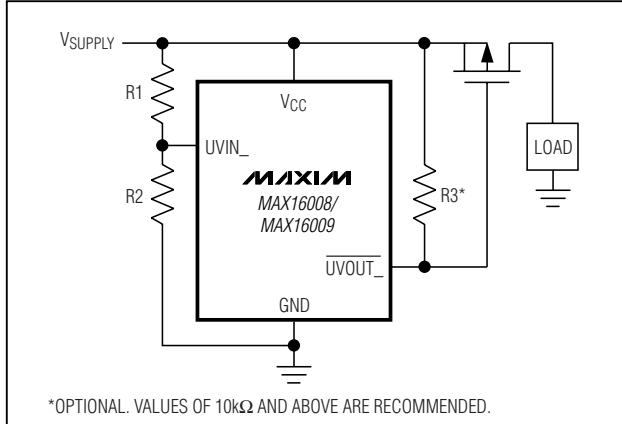


Figure 3. Overvoltage Shutdown Circuit (with External Pass MOSFET)

The MAX16008/MAX16009 are powered directly from the system voltage supply. Select R_1 and R_2 to set the trip voltage. When the supply voltage remains below the selected threshold, a low logic level on $UVOUT_-$ turns on the p-channel MOSFET. In the case of an overvoltage event, $UVOUT_-$ goes high turning off the MOSFET, and shuts down the power to the load.

Figure 4 shows a similar application using a fuse and a silicon-controlled rectifier (SCR). An overvoltage event turns on the SCR and shorts the supply to ground. The surge of current through the short circuit blows the fuse and terminates the current to the load. Select R_3 so that the gate of the SCR is properly biased when $UVOUT_-$ goes high.

Unused Inputs

Any unused $UVIN_-$ inputs must be connected to V_{CC} , and any unused $OVIN_-$ inputs must be connected to GND .

$UVOUT_-/OVOUT_-$ Outputs

$UVOUT_-$ and $OVOUT_-$ outputs assert low when $UVIN_-$ and $OVIN_-$, respectively, drop below or exceed their specified thresholds. The undervoltage/overvoltage outputs are open-drain with a (30μA) internal pullup to V_{CC} . For many applications, no external pullup resistor is required to interface with other logic devices. An external pullup resistor to any voltage up to 5.5V overdrives the internal pullup if interfacing to different logic supply voltages. Internal circuitry prevents reverse current flow from the external pullup voltage to V_{CC} (Figure 5). When choosing the external pullup resistor, the resistance value should be large enough to ensure that the output can sink the necessary current during a logic-low condition and small enough to be able to overdrive the internal pullup current and meet output high specifications

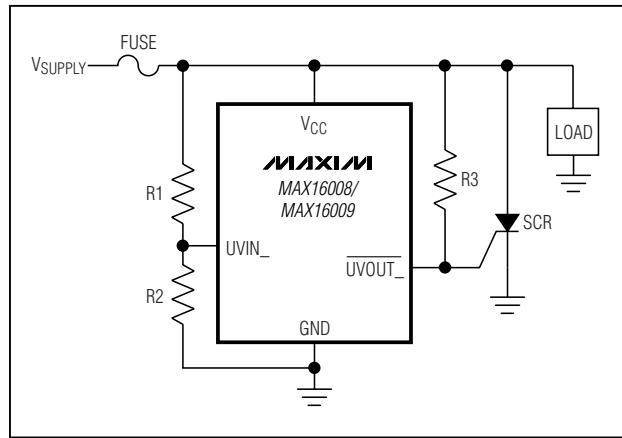


Figure 4. Overvoltage Shutdown Circuit (with SCR Fuse)

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

(V_{OH}). Resistor values of 50kΩ to 200kΩ can generally be used.

RESET Output (MAX16009 Only)

RESET asserts low when the voltage on any of the UVIN_{_} inputs falls below its respective threshold, the voltage on any of the OVIN_{_} inputs goes above its respective threshold, or MR is asserted. RESET remains asserted for the reset timeout period after all monitored UVIN_{_} inputs exceed their respective thresholds, all OVIN_{_} inputs fall below their respective thresholds, and MR is deasserted (see Figure 6). This open-drain output has a 30µA internal pullup.

Reset Timeout Capacitor

The reset timeout period can be adjusted to accommodate a variety of microprocessor (µP) applications from 50µs to 1.12s. Adjust the reset timeout period (t_{RP}) by connecting a capacitor (C_{SRT}) between SRT and GND. Calculate the reset timeout capacitor as follows:

$$C_{SRT}(F) = \frac{t_{RP}(s)}{\left(\frac{V_{TH_SRT}}{I_{SRT}} \right)}$$

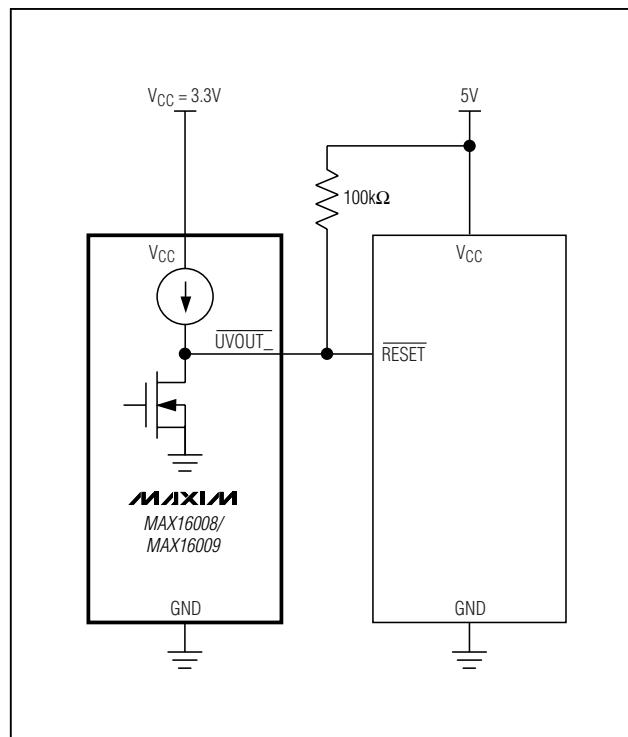


Figure 5. Interfacing to a Different Logic Supply Voltage

Do not use capacitor (C_{SRT}) values higher than 390nF. Connect SRT to V_{CC} for a factory-programmed reset timeout of 140ms (min).

Manual Reset Input (MR) (MAX16009 Only)

Many µP-based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic-low on MR asserts RESET low. RESET remains asserted while MR is low, and during the reset timeout period (140ms min) after MR returns high. The MR input has an internal 20kΩ pullup resistor to V_{CC}, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to GND provides additional noise immunity.

Margin Output Disable (MARGIN)

MARGIN allows system-level testing while power supplies are adjusted from their nominal voltages. Drive MARGIN low to deassert all outputs (UVOUT_{_},

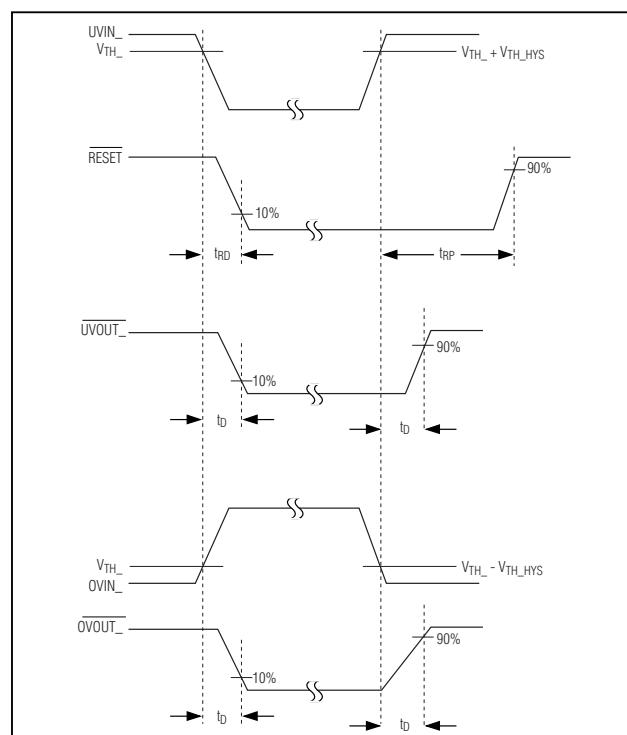
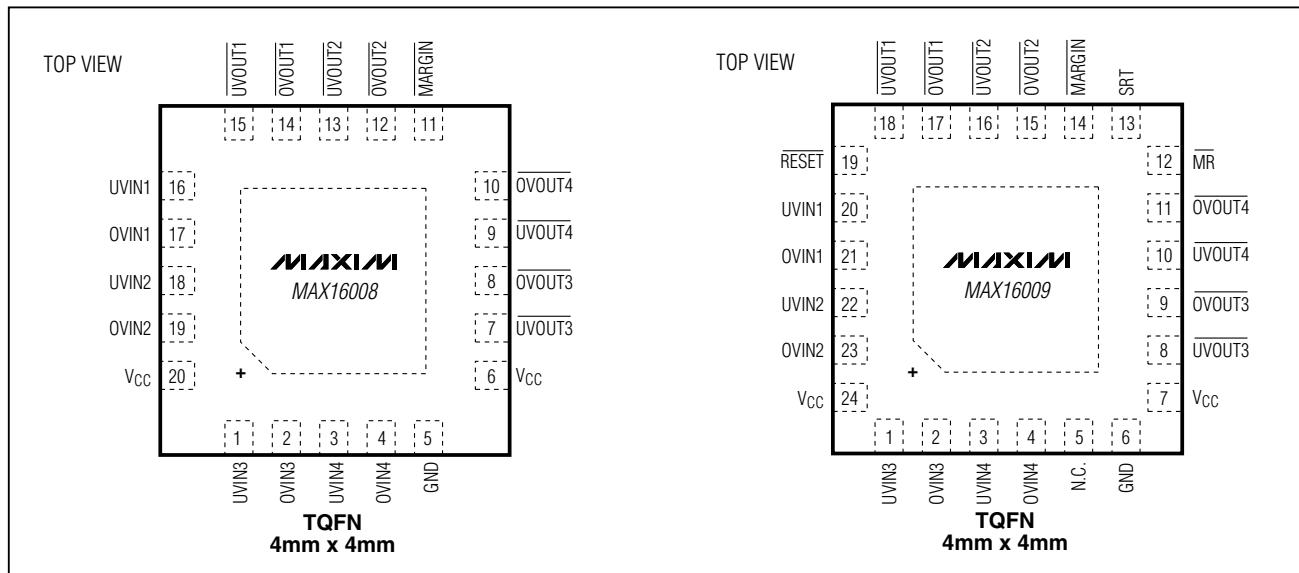


Figure 6. Output Timing Diagram

MAX16008/MAX16009

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

OVOUT₁, and RESET) regardless of the voltage at any monitored input. The state of each output does not change while MARGIN = GND. While MARGIN is low, the IC continues to monitor all voltages. When MARGIN is deasserted, the outputs go to their monitored states after a short propagation delay. The MARGIN input is internally pulled up to VCC. Leave unconnected or connect to VCC if unused.


Power-Supply Bypassing

The MAX16008/MAX16009 operate from a 2.0V to 5.5V supply. An undervoltage lockout ensures that the outputs are in the correct states when the UVLO is exceeded. In noisy applications, bypass VCC to ground with a 0.1 μ F capacitor as close to the device as possible. In addition, the additional capacitor improves transient immunity. For fast-rising VCC transients, additional capacitance may be required.

Selector Guide

PART	NUMBER OF MONITORED LEVELS	UNDERVOLTAGE/ OVERVOLTAGE THRESHOLDS	<u>RESET</u>	ADJUSTABLE RESET TIMEOUT	<u>MR</u>
MAX16008	4	Adjustable	—	—	—
MAX16009	4	Adjustable	✓	✓	✓

Pin Configurations

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
20 TQFN-EP	T2044+3	21-0139	90-0037
24 TQFN-EP	T2444+4	21-0139	90-0022

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/05	Initial release	—
1	1/11	Added soldering temperature in the <i>Absolute Maximum Rating</i> section and added symbol in <i>Electrical Characteristics</i> table	2

MAX16008/MAX16009

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 13