Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery \& Lifecycle Information:
ON Semiconductor
MC74LVX573DT

For any questions, you can email us directly:
sales@integrated-circuit.com

MC74LVX573

Octal D-Type Latch with 3-State Outputs

With 5 V-Tolerant Inputs

The MC74LVX573 is an advanced high speed CMOS octal latch with 3-state outputs. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.
This 8-bit D-type latch is controlled by a latch enable input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

Features

- High Speed: $t_{\text {PD }}=6.4 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: V ${ }_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V;

Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com
TSSOP-20
SOIC-20
CASE 751D
CASE 948E

PIN ASSIGNMENT

MARKING DIAGRAMS

SOIC-20

TSSOP-20

LVX573 = Specific Device Code
A = Assembly Location
WL, L = Wafer Lot
$Y \quad=$ Year
WW, W = Work Week
G or $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74LVX573

Figure 1. Logic Diagram

Table 1. PIN NAMES

Pins	Function
$\overline{\text { OE }}$	Output Enable Input
LE	Latch Enable Input
D0-D7	Data Inputs
O0-O7	3-State Latch Outputs

INPUTS			OUTPUTS	OPERATING MODE
OE	LE	Dn	On	
\bar{L}	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\overline{\mathrm{H}} \mathrm{~L}$	$\overline{\mathrm{H}} \mathrm{~L}$	Transparent (Latch Disabled); Read Latch
\bar{L}	$\overline{\mathrm{L}}$	h	$\stackrel{H}{\mathrm{H}}$	Latched (Latch Enabled) Read Latch
L	L	X	NC	Hold; Read Latch
H	L	X	Z	Hold; Disabled Outputs
$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\overline{\mathrm{H}} \mathrm{~L}$	\bar{z}	Transparent (Latch Disabled); Disabled Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{gathered} \text { h } \\ \text { in } \end{gathered}$	$\begin{aligned} & Z \\ & Z \end{aligned}$	Latched (Latch Enabled); Disabled Outputs

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; NC = No Change, State Prior to the Latch Enable High-to-Low Transition; X = High or Low Voltage Level or Transitions are Acceptable; Z = High Impedance State; For ICc Reasons DO NOT FLOAT Inputs.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
I_{IK}	Input Diode Current	-20	V
$\mathrm{I}_{\text {OK }}$	Output Diode Current	mA	
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	mA
$\mathrm{I}_{\text {CC }}$	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 25	mA
P_{D}	Power Dissipation	± 75	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MC74LVX573

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	3.6	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Rise and Fall Time	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{Cc}}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			1.5 2.0 2.4		V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		2.0 3.0 3.6			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	High-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}\right.$ or $\left.\mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mu \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} 1.9 \\ 2.9 \\ 2.48 \end{gathered}$		V
V_{OL}	Low-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ 0.36 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V
$l_{\text {in }}$	Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$
loz	Maximum 3-State Leakage Current	$\begin{aligned} & V_{\text {in }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & V_{\text {out }}=V_{\text {CC }} \text { or } G N D \end{aligned}$	3.6			$\begin{gathered} \pm 0.2 \\ 5 \end{gathered}$		± 2.5	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.6			4.0		40.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay LE to O	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} 8.2 \\ 10.7 \end{gathered}$	$\begin{aligned} & \hline 15.6 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.4 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.5 \end{aligned}$	
$\begin{aligned} & \text { tPLH, } \\ & \text { t PHL }^{2} \end{aligned}$	Propagation Delay D to O	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} 7.6 \\ 10.1 \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 21.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.9 \\ & 8.4 \end{aligned}$	$\begin{gathered} 9.3 \\ 12.8 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time OE to O	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} 7.8 \\ 10.3 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22.0 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.1 \\ & 8.6 \end{aligned}$	$\begin{gathered} 9.7 \\ 13.2 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time OE to O	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12.1	19.1	1.0	22.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.1	13.6	1.0	15.5	
toshl tosth	Output-to-Output Skew (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

MC74LVX573

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {in }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {out }}$	Maximum 3-State Output Capacitance		6				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2)		29				pF

2. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per latch). $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Measured in SOIC Package)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	0.5	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-0.5	-0.8	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.8	V

TIMING REQUIREMENTS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\frac{\mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C}}{\text { Limit }}$	Unit
			Typ	Limit		
${ }^{\text {w }}$ (h)	Minimum Pulse Width, LE	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, D to LE	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, D to LE	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

MC74LVX573

SWITCHING WAVEFORMS

Figure 2.

Figure 4.

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 6. Propagation Delay Test Circuit

Figure 3.

Figure 5.

TEST POINT

*Includes all probe and jig capacitance

Figure 7. 3-State Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX573DWR2G	SOIC-20 (Pb-Free)	$1000 /$ Tape \& Reel
MC74LVX573DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LVX573DTR2G	TSSOP-20 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. electronic components

MC74LVX573

PACKAGE DIMENSIONS

TSSOP-20
CASE 948E-02
ISSUE C

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74LVX573

PACKAGE DIMENSIONS

SOIC-20
CASE 751D-05
ISSUE G

NOTES

1. DIMENSIONS ARE IN MILLIMETERS.
. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
2. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
3. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
4. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION DIMENSION AT MAXIMUM MATERIAL MAXIMUM MATERIAL CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	12.65	12.95
E	7.40	7.60
\mathbf{e}	1.27	
BSC		
H	10.05	10.55
\mathbf{h}	0.25	0.75
\mathbf{L}	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

ON Semiconductor and the (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheet and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
mail: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

