

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#)
[MMBT6589T1G](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

MMBT6589T1

High Current Surface Mount PNP Silicon Switching Transistor for Load Management in Portable Applications

Features

- Pb-Free Package is Available

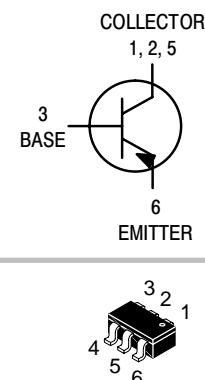
MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V_{CEO}	-30	Vdc
Collector-Base Voltage	V_{CBO}	-50	Vdc
Emitter-Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current – Continuous	I_C	-1.0	Adc
Collector Current – Peak	I_{CM}	-2.0	A
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	

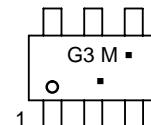
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D (Note 1)	540 4.4	mW mW/ $^\circ\text{C}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 1)	230	$^\circ\text{C}/\text{W}$
Total Device Dissipation $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D (Note 2)	925 7.4	mW mW/ $^\circ\text{C}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 2)	135	$^\circ\text{C}/\text{W}$
Total Device Dissipation (Single Pulse < 10 s)	$P_{D\text{single}}$ (Note 2) (Note 3)	1.3	W
Junction and Storage Temperature Range	T_J, T_{stg}	-55 to +150	$^\circ\text{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. FR-4 @ Minimum Pad
2. FR-4 @ 1.0 X 1.0 inch Pad
3. ref: Figure 8

ON Semiconductor®


<http://onsemi.com>

30 VOLTS, 2.0 AMPS PNP TRANSISTOR

TSOP-6
CASE 318G
STYLE 7

MARKING DIAGRAM

G3 = Specific Device Code

M = Date Code*

* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT6589T1	TSOP-6	3000/Tape & Reel
MMBT6589T1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

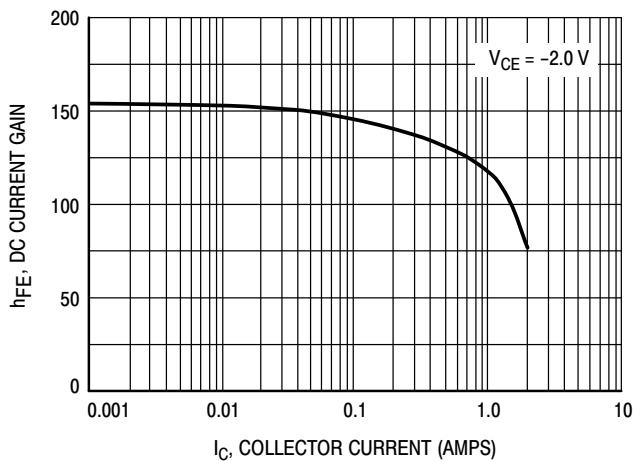
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MMBT6589T1

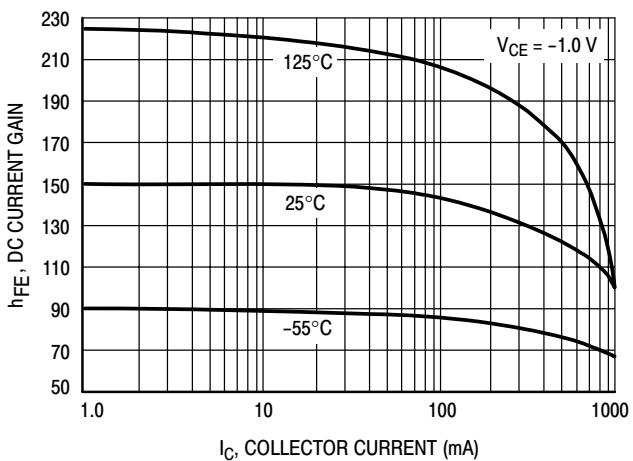
ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
----------------	--------	-----	-----	------

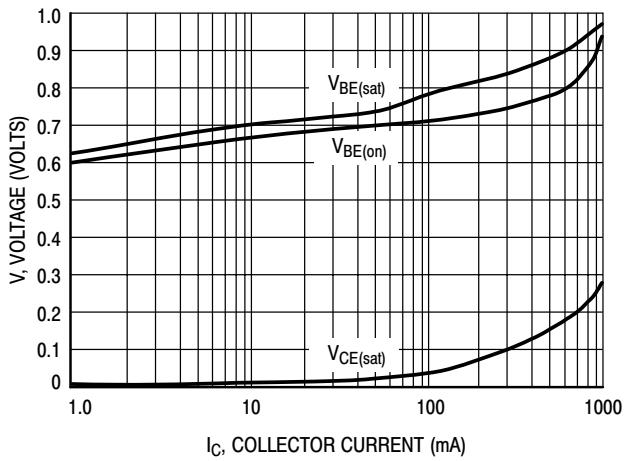
OFF CHARACTERISTICS

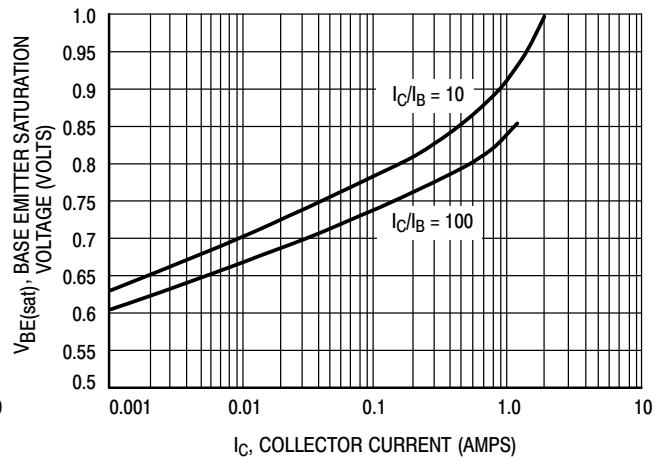

Collector-Emitter Breakdown Voltage ($I_C = -10 \text{ mA}_\text{dc}$, $I_B = 0$)	$V_{(\text{BR})\text{CEO}}$	-30	-	Vdc
Collector-Base Breakdown Voltage ($I_C = -0.1 \text{ mA}_\text{dc}$, $I_E = 0$)	$V_{(\text{BR})\text{CBO}}$	-50	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = -0.1 \text{ mA}_\text{dc}$, $I_C = 0$)	$V_{(\text{BR})\text{EBO}}$	-5.0	-	Vdc
Collector Cutoff Current ($V_{\text{CB}} = -30 \text{ Vdc}$, $I_E = 0$)	I_{CBO}	-	-0.1	μA_dc
Collector-Emitter Cutoff Current ($V_{\text{CES}} = -30 \text{ Vdc}$)	I_{CES}	-	-0.1	μA_dc
Emitter Cutoff Current ($V_{\text{EB}} = -4.0 \text{ Vdc}$)	I_{EBO}	-	-0.1	μA_dc

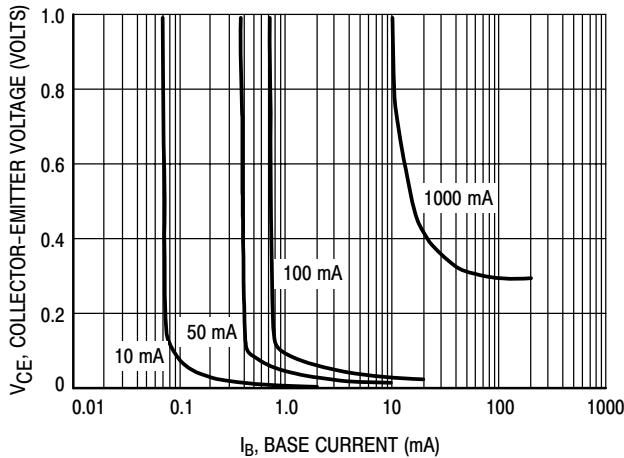
ON CHARACTERISTICS


DC Current Gain (Note 4) (Figure 1) ($I_C = -1.0 \text{ mA}$, $V_{\text{CE}} = -2.0 \text{ V}$) ($I_C = -500 \text{ mA}$, $V_{\text{CE}} = -2.0 \text{ V}$) ($I_C = -1.0 \text{ A}$, $V_{\text{CE}} = -2.0 \text{ V}$) ($I_C = 2.0 \text{ A}$, $V_{\text{CE}} = -2.0 \text{ V}$)	h_{FE}	100 100 80 40	- 300 - -	
Collector-Emitter Saturation Voltage (Note 4) (Figure 3) ($I_C = -0.5 \text{ A}$, $I_B = -0.05 \text{ A}$) ($I_C = -1.0 \text{ A}$, $I_B = 0.1 \text{ A}$) ($I_C = -2.0 \text{ A}$, $I_B = -0.2 \text{ A}$)	$V_{\text{CE}(\text{sat})}$	- - -	-0.25 -0.30 -0.65	V
Base-Emitter Saturation Voltage (Note 4) (Figure 2) ($I_C = -1.0 \text{ A}$, $I_B = -0.1 \text{ A}$)	$V_{\text{BE}(\text{sat})}$	-	-1.2	V
Base-Emitter Turn-on Voltage (Note 4) ($I_C = -1.0 \text{ A}$, $V_{\text{CE}} = -2.0 \text{ V}$)	$V_{\text{BE}(\text{on})}$	-	-1.1	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{\text{CE}} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f_T	100	-	MHz
Output Capacitance ($V_{\text{CB}} = -5.0 \text{ V}$, $f = 1.0 \text{ MHz}$)	Cobo	-	20	pF

4. Pulsed Condition: Pulse Width = 300 μsec , Duty Cycle $\leq 2\%$


MMBT6589T1


Figure 1. DC Current Gain versus Collector Current


Figure 2. DC Current Gain versus Collector Current

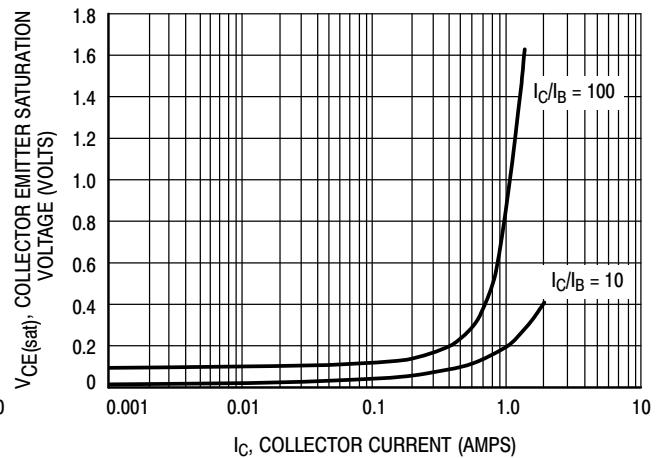

Figure 3. "On" Voltages

Figure 4. Base Emitter Saturation Voltage versus Collector Current

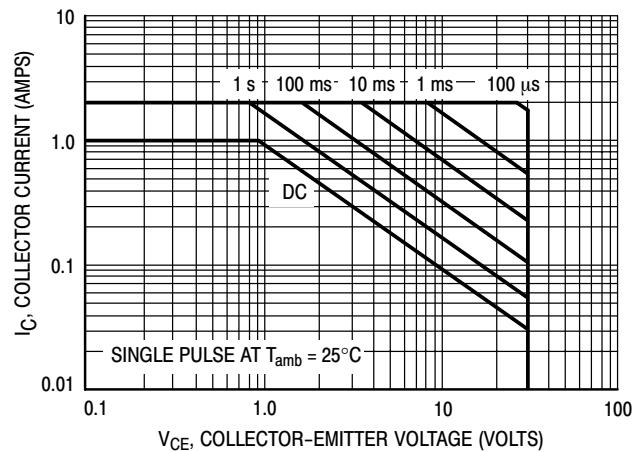


Figure 5. Collector Emitter Saturation Voltage versus Collector Current

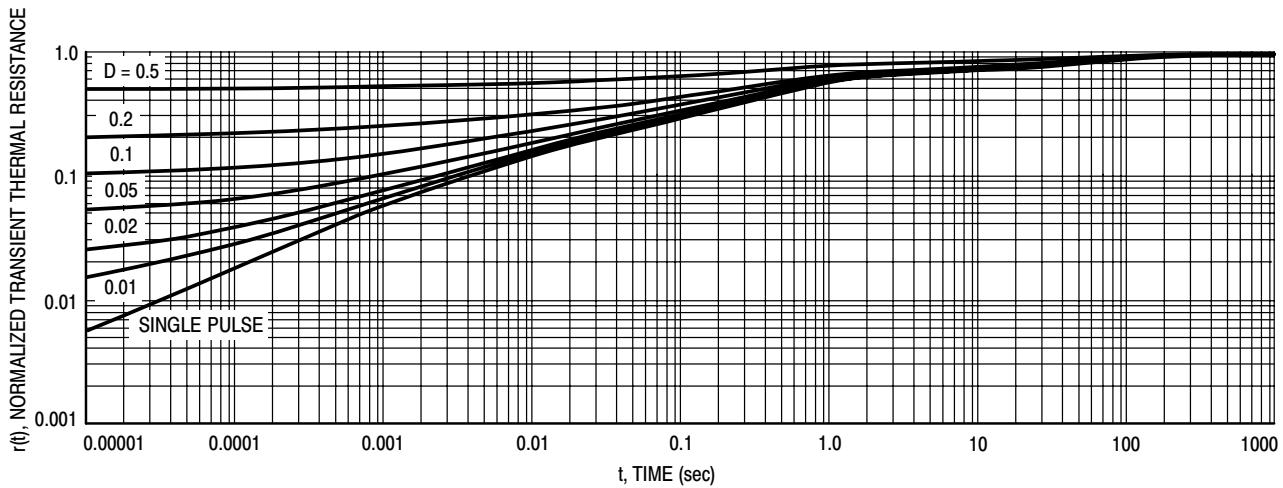


Figure 6. Collector Emitter Saturation Voltage versus Collector Current

MMBT6589T1

Figure 7. Safe Operating Area

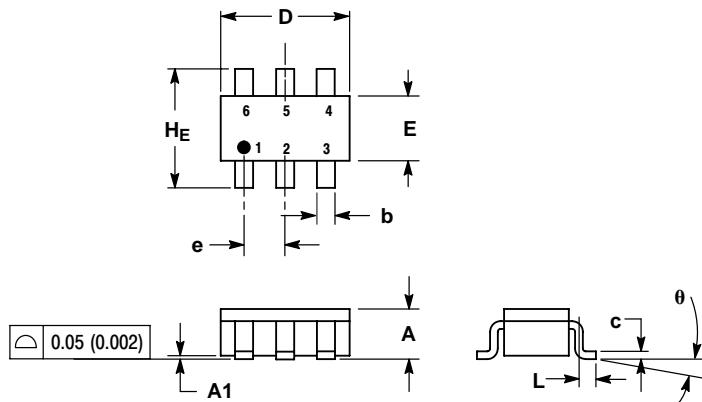
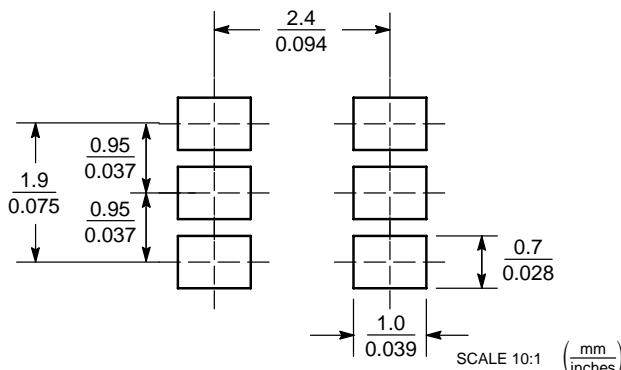


Figure 8. Normalized Thermal Response

MMBT6589T1

PACKAGE DIMENSIONS

TSOP-6
CASE 318G-02
ISSUE P


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
c	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
e	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
H_E	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	—	10°	0°	—	10°

STYLE 7:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. N/C
 5. COLLECTOR
 6. Emitter

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA
Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850

ON Semiconductor Website: <http://onsemi.com>

Order Literature: <http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.

MMBT6589T1/D