Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTMS4706NR2

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of NTMS4706NR2 - MOSFET N-CH 30V 6.4A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4706N

Power MOSFET 30 V, 10.3 A, Single N-Channel, SO-8

Features

- Low R_{DS(on)}
- Low Gate Charge
- Standard SO-8 Single Package
- Pb-Free Package is Available

Applications

- Notebooks, Graphics Cards
- Synchronous Rectification
- High Side Switch
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

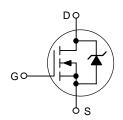
Paran	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	8.6	Α
Current (Note 1)	State	T _A = 85°C		6.2	
	t ≤ 10 s	T _A = 25°C		10.3	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.5	W
	$t \leq 10 s$			2.2	
Continuous Drain	Steady	T _A = 25°C	I _D	6.4	Α
Current (Note 2)	State	T _A = 85°C		4.6	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.83	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	31	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	°C
Source Current (Body Diode)			IS	2.1	Α
Single Pulse Drain-to–Source Avalanche Energy (V_{DD} = 25 V, V_{GS} = 10 V, I_L Peak = 7.5 A, L = 10 mH, R_G = 25 Ω)			E _{AS}	150	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	83.5	°C/W
Junction–to–Ambient – $t \le 10 \text{ s (Note 1)}$	$R_{\theta JA}$	58	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	150	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

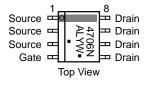
- 1. Surfacemounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- 2. Surfacemounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)
30 V	9.0 mΩ @ 10 V	10.3 A
	11.4 mΩ @ 4.5 V	10.5 A


N-Channel

MARKING DIAGRAM/ PIN ASSIGNMENT

SO-8 **CASE 751** STYLE 12

4706N = Device Code

= Assembly Location

= WaferLot WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMS4706NR2	SO-8	2500/Tape & Reel
NTMS4706NR2G	SO-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Datasheet of NTMS4706NR2 - MOSFET N-CH 30V 6.4A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4706N

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				21		mV/°C
Zero Gate Voltage Drain Current	Voltage Drain Current I_{DSS} $T_{J} = 25^{\circ}C$		T _J = 25°C			1.0	μΑ
ero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 \text{ V}, V_{DS} = 24 \text{ V}$ $T_{J} = 12 \text{ T}$	T _J = 125°C			50	1		
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)	•		-		•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.0		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	10.3 A		9.0	12	mΩ
		V _{GS} = 4.5 V, I _D =	= 10 A		11.4	15	
Forward Transconductance	9FS	V _{DS} = 15 V, I _D =	: 10 A		19		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAI	NCE	-		•		•
Input Capacitance	C _{iss}				950		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz	, V _{DS} = 24 V		400		1
Reverse Transfer Capacitance	C _{rss}				100		1
Total Gate Charge	Q _{G(TOT)}				10	15	nC
Threshold Gate Charge	Q _{G(TH)}	1, , , , , , , , , , , , , , , , , , ,			1.25		1
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15$	V, I _D = 10 A		2.4		1
Gate-to-Drain Charge	Q_{GD}		•		4.5		1
Gate Resistance	R_{G}				1.82		Ω
SWITCHING CHARACTERISTICS (No	ote 4)				•	•	
Turn-On Delay Time	t _{d(on)}				7.5	12	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 15 \	/. In = 1.0 A.		4.0	8.0	1
Turn-Off Delay Time	t _{d(off)}	$R_G = 3.0 \Omega$!		24	40	
Fall Time	t _f				14	25	
DRAIN-SOURCE DIODE CHARACTE	RISTICS				•	•	•
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 2.1 A	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$		0.74 0.57	1.0	V
Reverse Recovery Time	te-		1J = 120 C		34		nc
<u> </u>	t _{RR}	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 2.1 \text{ A}$					ns
Charge Time	t _a				16		4
Discharge Time	t _b				18	1	-
Reverse Recovery Charge	Q_{RR}				29		nC

- 3. Pulse Test: pulse width = $300 \mu s$, duty cycle $\leq 2\%$.
- 4. Switching characteristics are independent of operating junction temperatures.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4706N

TYPICAL PERFORMANCE CURVES

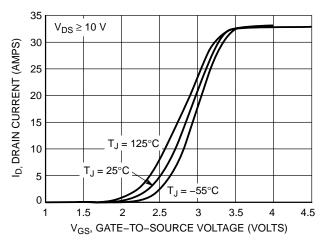
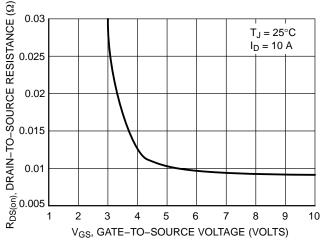



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

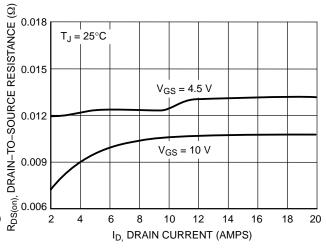
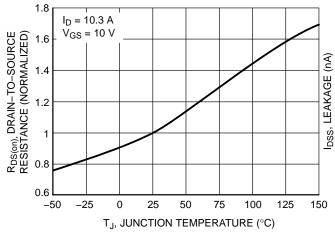



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

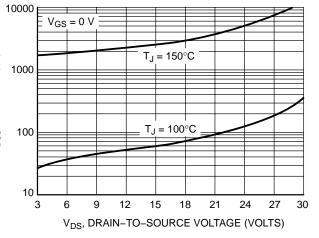
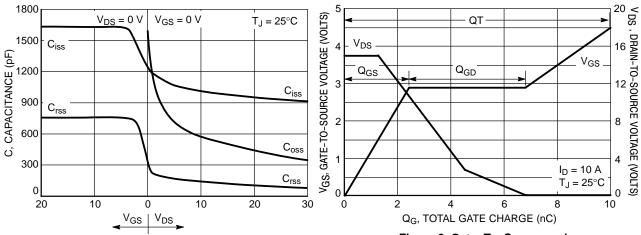



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTMS4706N

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

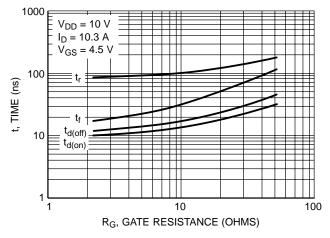


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

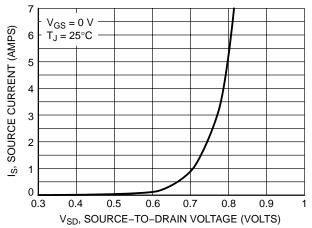
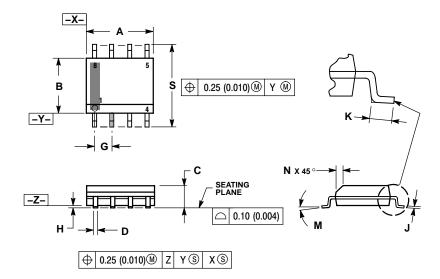


Figure 10. Diode Forward Voltage vs. Current

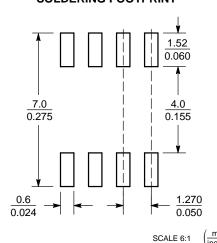

Datasheet of NTMS4706NR2 - MOSFET N-CH 30V 6.4A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4706N

PACKAGE DIMENSIONS

SOIC-8 CASE 751-07 **ISSUE AG**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED CIDE
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIMETERS		INC	INCHES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

STYLE 12:

- PIN 1. SOURCE
 - SOURCE SOURCE
 - 2. 3. 4.
 - GATE DRAIN
 - DRAIN
 - DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Datasheet of NTMS4706NR2 - MOSFET N-CH 30V 6.4A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMS4706N

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was regarded the design or manufacture of the part. SCILLC is an Egual associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA

Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative