

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>CY74FCT162500ATPVC</u>

For any questions, you can email us directly: sales@integrated-circuit.com



Data sheet acquired from Cypress Semiconductor Corporation. Data sheet modified to remove devices not offered.



CY74FCT162500T

CY74FCT16500T

SCCS056A - August 1994 - Revised October 2001

#### **Features**

- FCT-C speed at 4.6 ns
- Ioff supports partial-power- mode operation
- · Edge-rate control circuitry for significantly improved noise characteristics
- Typical output skew < 250 ps
- ESD > 2000V
- TSSOP (19.6-mil pitch) and SSOP (25-mil pitch) packages
- Industrial temperature range of -40°C to +85°C
- $V_{CC} = 5V \pm 10\%$

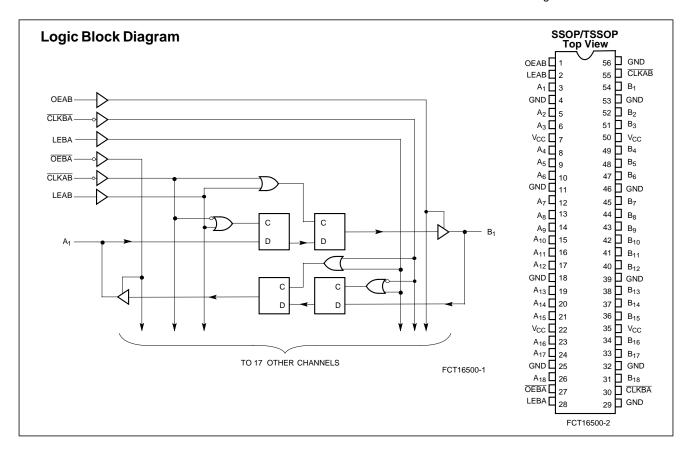
#### CY74FCT16500T Features:

- · 64 mA sink current, 32 mA source current
- Typical  $V_{OLP}$  (ground bounce) <1.0V at  $V_{CC}$  = 5V,  $T_A$  = 25°C

#### CY74FCT162500T Features:

- · Balanced 24 mA output drivers
- Reduced system switching noise
- Typical  $V_{OLP}$  (ground bounce) <0.6V at  $V_{CC} = 5V$ , T<sub>A</sub>= 25°C

# 18-Bit Registered Transceivers


## **Functional Description**

These 18-bit universal bus transceivers can be operated in transparent, latched, or clock modes by combining D-type latches and D-type flip-flops. Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch enable (LEAB and LEBA), and clock inputs (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B-to-A is similar to that of A-to-B and is controlled by OEBA, LEBA, and CLKBA.

This device is fully specified for partial-power-down applications using  $I_{\text{off}}$  . The  $I_{\text{off}}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

CY74FCT16500T is ideally suited for driving high-capacitance loads and low-impedance backplanes.

The CY74FCT162500T has 24-mA balanced output drivers with current limiting resistors in the outputs. This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce. The CY74FCT162500T is ideal for driving transmission lines.







### **Pin Summary**

|       | T                                                |  |  |  |  |  |  |
|-------|--------------------------------------------------|--|--|--|--|--|--|
| Name  | Description                                      |  |  |  |  |  |  |
| OEAB  | A-to-B Output Enable Input                       |  |  |  |  |  |  |
| OEBA  | BA B-to-A Output Enable Input (Active LOW)       |  |  |  |  |  |  |
| LEAB  | A-to-B Latch Enable Input                        |  |  |  |  |  |  |
| LEBA  | B-to-A Latch Enable Input                        |  |  |  |  |  |  |
| CLKAB | A-to-B Clock Input (Active LOW)                  |  |  |  |  |  |  |
| CLKBA | B-to-A Clock Input (Active LOW)                  |  |  |  |  |  |  |
| А     | A-to-B Data Inputs or B-to-A Three-State Outputs |  |  |  |  |  |  |
| В     | B-to-A Data Inputs or A-to-B Three-State Outputs |  |  |  |  |  |  |

### Function Table<sup>[1, 2]</sup>

|      | Inputs |       |   |                  |  |  |  |  |  |
|------|--------|-------|---|------------------|--|--|--|--|--|
| OEAB | LEAB   | CLKAB | Α | В                |  |  |  |  |  |
| L    | Х      | Х     | Х | Z                |  |  |  |  |  |
| Н    | Н      | Х     | L | L                |  |  |  |  |  |
| Н    | H X H  |       | Н | Н                |  |  |  |  |  |
| Н    | L      | l     | L | L                |  |  |  |  |  |
| Н    | L      | l     | Н | Н                |  |  |  |  |  |
| Н    | L      | Н     | Х | B <sup>[3]</sup> |  |  |  |  |  |
| Н    | L      | L     | Х | B <sup>[4]</sup> |  |  |  |  |  |

## Maximum Ratings[5, 6]

(Above which the useful life may be impaired. For user guidelines, not tested.) Ambient Temperature with Power Applied ...... Com'l -55°C to +125°C DC Input Voltage ......-0.5V to +7.0V DC Output Voltage .....-0.5V to +7.0V DC Output Current (Maximum Sink Current/Pin) .....-60 to +120 mA Static Discharge Voltage.....>2001V (per MIL-STD-883, Method 3015)

### **Operating Range**

| Range      | Ambient<br>Temperature | V <sub>CC</sub> |
|------------|------------------------|-----------------|
| Industrial | -40°C to +85°C         | 5V ± 10%        |

### Electrical Characteristics Over the Operating Range

| Parameter        | Description                                             | Test Conditions                                             | Min. | Typ. <sup>[7]</sup> | Max. | Unit |
|------------------|---------------------------------------------------------|-------------------------------------------------------------|------|---------------------|------|------|
| V <sub>IH</sub>  | Input HIGH Voltage                                      |                                                             | 2.0  |                     |      | V    |
| V <sub>IL</sub>  | Input LOW Voltage                                       |                                                             |      |                     | 0.8  | V    |
| V <sub>H</sub>   | Input Hysteresis <sup>[8]</sup>                         |                                                             |      | 100                 |      | mV   |
| V <sub>IK</sub>  | Input Clamp Diode Voltage                               | V <sub>CC</sub> =Min., I <sub>IN</sub> =-18 mA              |      | -0.7                | -1.2 | V    |
| I <sub>IH</sub>  | Input HIGH Current                                      | V <sub>CC</sub> =Max., V <sub>I</sub> =V <sub>CC</sub>      |      |                     | ±1   | μΑ   |
| I <sub>IL</sub>  | Input LOW Current                                       | V <sub>CC</sub> =Max., V <sub>I</sub> =GND.                 |      |                     | ±1   | μΑ   |
| I <sub>OZH</sub> | High Impedance Output Current (Three-State Output pins) | V <sub>CC</sub> =Max., V <sub>OUT</sub> =2.7V               |      |                     | ±1   | μА   |
| I <sub>OZL</sub> | High Impedance Output Current (Three-State Output pins) | V <sub>CC</sub> =Max., V <sub>OUT</sub> =0.5V               |      |                     | ±1   | μА   |
| I <sub>OS</sub>  | Short Circuit Current <sup>[9]</sup>                    | V <sub>CC</sub> =Max., V <sub>OUT</sub> =GND                | -80  | -140                | -200 | mA   |
| Io               | Output Drive Current <sup>[9]</sup>                     | V <sub>CC</sub> =Max., V <sub>OUT</sub> =2.5V               | -50  |                     | -180 | mA   |
| I <sub>OFF</sub> | Power-Off Disable                                       | V <sub>CC</sub> =0V, V <sub>OUT</sub> ≤4.5V <sup>[10]</sup> |      |                     | ±1   | μΑ   |

#### Notes:

- H = HIGH Voltage Level. L = LOW Voltage Level. X = Don't Care. Z = HIGH Impedance.

  A-to-B data flow is shown, B-to-A data flow is similar but uses OEBĀ, LEBA, and CLKBĀ.

  Output level before the indicated steady-state input conditions were established.

  Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

  Operation beyond the limits set forth may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature

- Operation beyond the limits set forth may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
   Unused inputs must always be connected to an appropriate logic voltage level, preferably either V<sub>CC</sub> or ground.
   Typical values are at V<sub>CC</sub>=5.0V, T<sub>A</sub>= +25°C ambient.
   This parameter is specified but not tested.
   Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, I<sub>OS</sub> tests should be performed last.
   Tested at +25°C.





# **Output Drive Characteristics for CY74FCT16500T**

| Parameter       | Description         | Test Conditions                                | Min. | Typ. <sup>[7]</sup> | Max. | Unit |
|-----------------|---------------------|------------------------------------------------|------|---------------------|------|------|
| V <sub>OH</sub> | Output HIGH Voltage | V <sub>CC</sub> =Min., I <sub>OH</sub> =-3 mA  | 2.5  | 3.5                 |      | V    |
|                 |                     | V <sub>CC</sub> =Min., I <sub>OH</sub> =-15 mA | 2.4  | 3.5                 |      |      |
|                 |                     | V <sub>CC</sub> =Min., I <sub>OH</sub> =-32 mA | 2.0  | 3.0                 |      |      |
| V <sub>OL</sub> | Output LOW Voltage  | V <sub>CC</sub> =Min., I <sub>OL</sub> =64 mA  |      | 0.2                 | 0.55 | V    |

### **Output Drive Characteristics for CY74FCT162500T**

| Parameter        | Description                        | Test Conditions                                                 | Min. | Typ. <sup>[7]</sup> | Max. | Unit |
|------------------|------------------------------------|-----------------------------------------------------------------|------|---------------------|------|------|
| I <sub>ODL</sub> | Output LOW Current <sup>[9]</sup>  | $V_{CC}$ =5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $V_{OUT}$ =1.5V | 60   | 115                 | 150  | mA   |
| I <sub>ODH</sub> | Output HIGH Current <sup>[9]</sup> | $V_{CC}$ =5V, $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $V_{OUT}$ =1.5V | -60  | -115                | -150 | mA   |
| V <sub>OH</sub>  | Output HIGH Voltage                | V <sub>CC</sub> =Min., I <sub>OH</sub> =-24 mA                  | 2.4  | 3.3                 |      | V    |
| V <sub>OL</sub>  | Output LOW Voltage                 | V <sub>CC</sub> =Min., I <sub>OL</sub> =24 mA                   |      | 0.3                 | 0.55 | V    |

# **Capacitance**<sup>[8]</sup> ( $T_A = +25^{\circ}C$ , f = 1.0 MHz)

| Parameter        | Description        | Test Conditions       | Typ. <sup>[7]</sup> | Max. | Unit |
|------------------|--------------------|-----------------------|---------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $V_{IN} = 0V$         | 4.5                 | 6.0  | pF   |
| C <sub>OUT</sub> | Output Capacitance | V <sub>OUT</sub> = 0V | 5.5                 | 8.0  | pF   |

### **Power Supply Characteristics**

| Parameter        | Description                                      | Test Condition                                                                                                  | ons                                                              | Typ. <sup>[7]</sup> | Max.                 | Unit   |
|------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|----------------------|--------|
| I <sub>CC</sub>  | Quiescent Power Supply Current                   | V <sub>CC</sub> =Max.                                                                                           | V <sub>IN</sub> ≤0.2V,<br>V <sub>IN</sub> ≥V <sub>CC</sub> -0.2V | 5                   | 500                  | μΑ     |
| Δl <sub>CC</sub> | Quiescent Power Supply Current (TTL inputs HIGH) | V <sub>CC</sub> =Max.                                                                                           | V <sub>IN</sub> =3.4V <sup>[11]</sup>                            | 0.5                 | 1.5                  | mA     |
| I <sub>CCD</sub> | Dynamic Power Supply<br>Current <sup>[12]</sup>  | V <sub>CC</sub> =Max., One Input Toggling,<br>50% Duty Cycle, Outputs Open,<br>OEAB=OEBA=V <sub>CC</sub> or GND | V <sub>IN</sub> =V <sub>CC</sub> or<br>V <sub>IN</sub> =GND      | 75                  | 120                  | μA/MHz |
| I <sub>C</sub>   | Total Power Supply Current <sup>[13]</sup>       | V <sub>CC</sub> =Max., f <sub>0</sub> =10 MHz<br>(CLKAB), f <sub>1</sub> =5 MHz, 50% Duty                       | V <sub>IN</sub> =V <sub>CC</sub> or<br>V <sub>IN</sub> =GND      | 0.8                 | 1.7                  | mA     |
|                  |                                                  | Cycle, Outputs Open, One Bit Toggling, OEAB=OEBA=V <sub>CC</sub> LEAB=GND                                       | V <sub>IN</sub> =3.4V or<br>V <sub>IN</sub> =GND                 | 1.3                 | 3.2                  | mA     |
|                  |                                                  | V <sub>CC</sub> =Max., f <sub>0</sub> =10 MHz,<br>f <sub>1</sub> =2.5 MHz, 50% Duty                             | V <sub>IN</sub> =V <sub>CC</sub> or<br>V <sub>IN</sub> =GND      | 3.8                 | 6.5 <sup>[14]</sup>  | mA     |
|                  |                                                  | Cycle, Outputs Open, Eighteen Bits Toggling, OEAB=OEBA=V <sub>CC</sub> LEAB=GND                                 | V <sub>IN</sub> =3.4V or<br>V <sub>IN</sub> =GND                 | 8.5                 | 20.8 <sup>[14]</sup> | mA     |

#### Notes:

11. Per TTL driven input (V<sub>IN</sub>=3.4V); all other inputs at V<sub>CC</sub> or GND.

12. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

13. I<sub>C</sub> = |<sub>QUIESCENT</sub> + |<sub>INPUTS</sub> + |<sub>DYNAMIC</sub> |
 |<sub>C</sub> = |<sub>CC</sub>+Δ|<sub>CC</sub>D<sub>H</sub>N<sub>T</sub>+|<sub>CCD</sub>(f<sub>0</sub>/2 + f<sub>1</sub>N<sub>1</sub>)
 |<sub>CC</sub> = Quiescent Current with CMOS input levels
 |<sub>A</sub>|<sub>CC</sub> = Power Supply Current for a TTL HIGH input (V<sub>IN</sub>=3.4V)
 |<sub>DL</sub> = Duty Cycle for TTL inputs HIGH

D<sub>H</sub> N<sub>T</sub> Duty Cycle for TTL inputs HIGH Number of TTL inputs at D<sub>H</sub>

Dynamic Current caused by an input transition pair (HLH or LHL) Clock frequency for registered devices, otherwise zero  $I_{CCD}$ 

Input signal frequency

Number of inputs changing at f<sub>1</sub>

All currents are in milliamps and all frequencies are in megahertz.

14. Values for these conditions are examples of the I<sub>CC</sub> formula. These limits are specified but not tested.





# Switching Characteristics Over the Operating Range<sup>[15]</sup>

|                                      |                                                    |            | CY74FCT | 162500AT |      | 16500CT/<br>162500CT |         | Fig                         |
|--------------------------------------|----------------------------------------------------|------------|---------|----------|------|----------------------|---------|-----------------------------|
| Parameter                            | Description                                        |            | Min.    | Max.     | Min. | Max.                 | Unit    | Fig.<br>No. <sup>[16]</sup> |
| f <sub>MAX</sub>                     | CLKAB or CLKBA frequency                           |            |         | 150      |      | 150                  | MHz     |                             |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>A to B or B to A              |            | 1.5     | 5.1      | 1.5  | 4.6                  | ns      | 1, 3                        |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>LEBA to A, LEAB to B          |            | 1.5     | 5.6      | 1.5  | 5.3                  | ns      | 1, 5                        |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>CLKBA to A, CLKAB to B        | 1.5        | 5.6     | 1.5      | 5.3  | ns                   | 1, 5    |                             |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time<br>OEBA to A, OEAB to B         | 1.5        | 6.0     | 1.5      | 5.4  | ns                   | 1, 7, 8 |                             |
| t <sub>PHZ</sub>                     | Output Disable Time<br>OEBA to A, OEAB to B        | 1.5        | 5.6     | 1.5      | 5.2  | ns                   | 1, 7, 8 |                             |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW<br>A to CLKAB, B to CLKBA |            | 3.0     |          | 3.0  |                      | ns      | 9                           |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW<br>A to CLKAB, B to CLKBA   |            | 0       |          | 0    |                      | ns      | 9                           |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW                           | Clock HIGH | 3.0     |          | 3.0  |                      | ns      | 4                           |
|                                      | A to LEAB, B to LEBA                               | Clock LOW  | 1.5     |          | 1.5  |                      | ns      | 4                           |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW<br>A to LEAB, B to LEBA     | 1.5        |         | 1.5      |      | ns                   | 4       |                             |
| t <sub>W</sub>                       | LEAB or LEBA Pulse Width HIGH                      |            | 3.0     |          | 2.5  |                      | ns      | 5                           |
| t <sub>W</sub>                       | CLKAB or CLKBA Pulse Width HI                      | GH or LOW  | 3.0     |          | 3.0  |                      | ns      | 5                           |
| t <sub>SK(O)</sub>                   | Output Skew <sup>[17]</sup>                        |            |         | 0.5      |      | 0.5                  | ns      |                             |

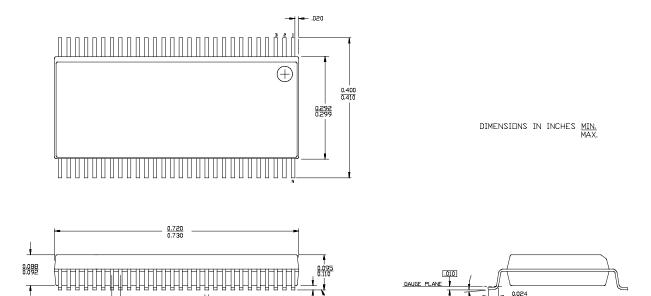
## Ordering Information CY74FCT16500T

| Speed<br>(ns) | Ordering Code          | Package<br>Name | Package Type            | Operating<br>Range |
|---------------|------------------------|-----------------|-------------------------|--------------------|
| 4.6           | CY74FCT16500CTPACT     | Z56             | 56-Lead (240-Mil) TSSOP | Industrial         |
|               | CY74FCT16500CTPVC/PVCT | O56             | 56-Lead (300-Mil) SSOP  |                    |

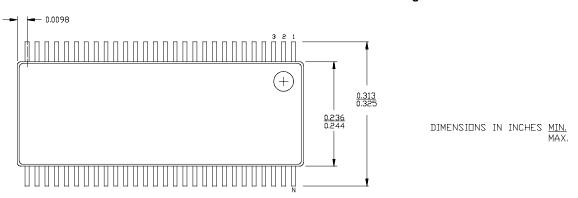
### Ordering Information CY74FCT162500T

| Speed<br>(ns) | Ordering Code      | Package<br>Name | Package Type           | Operating Range |
|---------------|--------------------|-----------------|------------------------|-----------------|
| 4.6           | CY74FCT162500CTPVC | O56             | 56-Lead (300-Mil) SSOP | Industrial      |
|               | 74FCT162500CTPVCT  | O56             | 56-Lead (300-Mil) SSOP |                 |
| 5.1           | CT74FCT162500ATPVC | O56             | 56-Lead (300-Mil) SSOP | Industrial      |
|               | 74FCT162500ATPVCT  | O56             | 56-Lead (300-Mil) SSOP | 7               |

#### Notes:

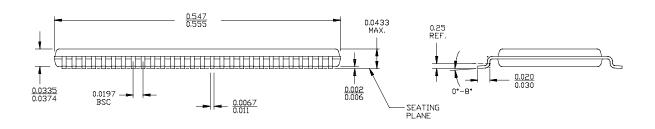

<sup>15.</sup> Minimum limits are specified but not tested on Propagation Delays.
16. See "Parameter Measurement Information" in the General Information section.
17. Skew between any two outputs of the same package switching in the same direction. This parameter is ensured by design.






## **Package Diagrams**

### 56-Lead Shrunk Small Outline Package O56




### 56-Lead Thin Shrunk Small Outline Package Z56



0.008 0.016

0.008 0.0135





# Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of CY74FCT162500ATPVC - IC UNIV BUS TXRX 18BIT 56SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

24-Apr-2015

#### PACKAGING INFORMATION

| Orderable Device   | Status   | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|--------------------|----------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                    | (1)      |              | Drawing |      | Qty     | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| 74FCT16500CTPVCG4  | OBSOLETE | SSOP         | DL      | 56   |         | TBD                        | Call TI          | Call TI            | -40 to 85    |                |         |
| CY74FCT16500CTPVC  | OBSOLETE | SSOP         | DL      | 56   |         | TBD                        | Call TI          | Call TI            | -40 to 85    |                |         |
| CY74FCT16500CTPVCT | ACTIVE   | SSOP         | DL      | 56   | 1000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | FCT16500C      | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): Til defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in the component is otherwise considered Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in the companion of t

in homogeneous material)

- (9) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Addendum-Page 1



# **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of CY74FCT162500ATPVC - IC UNIV BUS TXRX 18BIT 56SSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

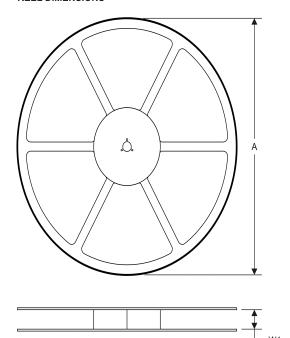
INSTRUMENTS
www.ti.com 24-Apr-2015

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

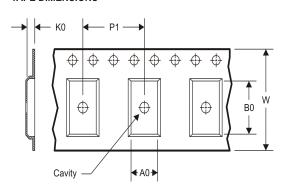
Addendum-Page 2

# Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of CY74FCT162500ATPVC - IC UNIV BUS TXRX 18BIT 56SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com




# **PACKAGE MATERIALS INFORMATION**


www.ti.com 14-Jul-2012

### **TAPE AND REEL INFORMATION**

#### **REEL DIMENSIONS**



#### TAPE DIMENSIONS

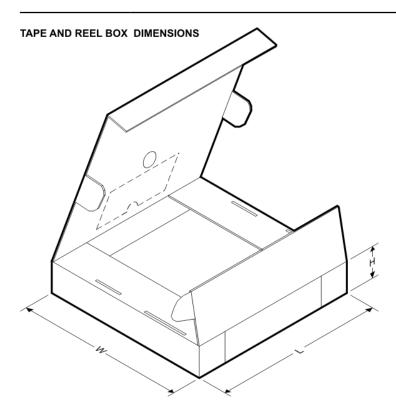


| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### TAPE AND REEL INFORMATION

\*All dimensions are nominal

| Device             | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CY74FCT16500CTPVCT | SSOP            | DL                 | 56 | 1000 | 330.0                    | 32.4                     | 11.35      | 18.67      | 3.1        | 16.0       | 32.0      | Q1               |


# Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of CY74FCT162500ATPVC - IC UNIV BUS TXRX 18BIT 56SSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

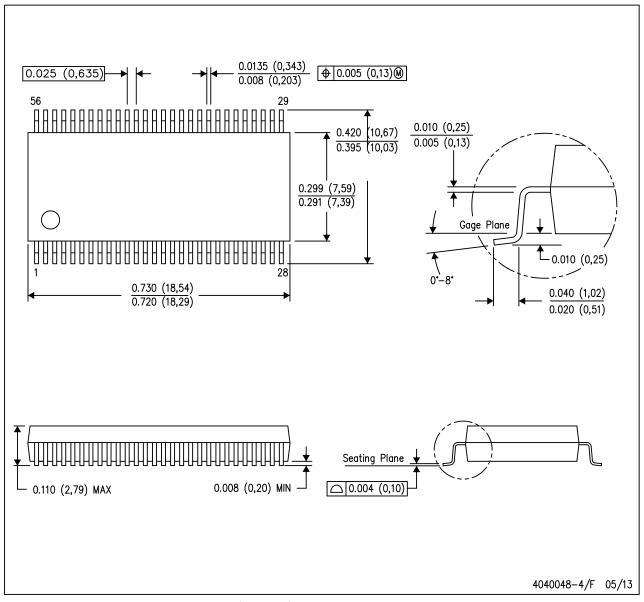


# **PACKAGE MATERIALS INFORMATION**

www.ti.com 14-Jul-2012



### \*All dimensions are nominal


| Device             | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CY74FCT16500CTPVCT | SSOP         | DL              | 56   | 1000 | 367.0       | 367.0      | 55.0        |



### **MECHANICAL DATA**

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.





# **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of CY74FCT162500ATPVC - IC UNIV BUS TXRX 18BIT 56SSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

 Power Mgmt
 power.ti.com
 Space, Avionics and Defense
 www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

**Products** 

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated