Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

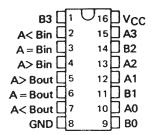
Texas Instruments SN74S85D

For any questions, you can email us directly: sales@integrated-circuit.com

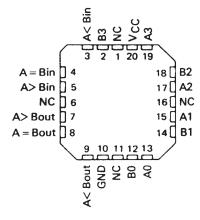
Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS


SDLS123 - MARCH 1974 - REVISED MARCH 1988

TYPE	TYPICAL POWER DISSIPATION	TYPICAL DELAY (4-BIT WORDS)
'85	275 mW	23 ns
LS85	52 mW	24 ns
' \$85	365 mW	11 ns


description

These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

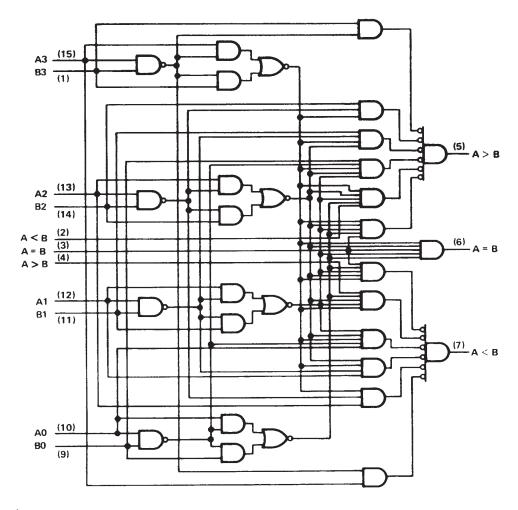
SN5485, SN54LS85, SN54S85 . . . J OR W PACKAGE SN7485 : . . N PACKAGE SN74LS85, SN74S85 . . . D OR N PACKAGE (TOP VIEW)

SN54LS85, SN54S85 . . . FK PACKAGE (TOP VIEW)

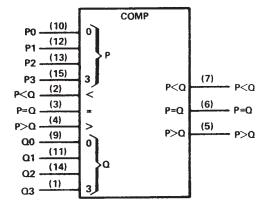
NC - No internal connection

FUNCTION TABLE

		ARING UTS			CASCADING INPUTS			OUTPUTS	
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > 8	A < B	A = 8
A3 > B3	Х	×	×	Х	Х	Х	Н	L	L
A3 < B3	×	×	×	×	×	×	L	Н	L
A3 = B3	A2 > B2	×	×	×	X	X	н	L	L
A3 = B3	A2 < B2	×	×	×	×	×	L	Н	L
A3 = B2	A2 = B2	A1 > B1	×	×	×	×	н	L	L
A3 = B3	A2 = B2	A1 < B1	×	×	×	×	L	н	L
A2 = B3	A2 = B2	A1 = B1	A0 > B0	×	×	×	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	x	X	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	н	Ĺ	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	L	н	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	×	×	н	L	Ĺ	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	Н	L



Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

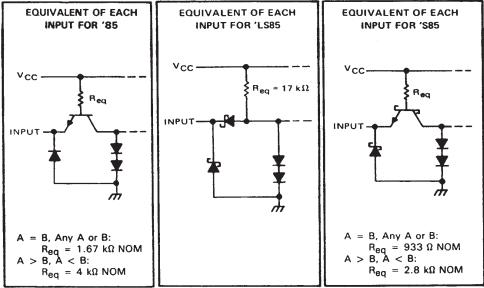

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

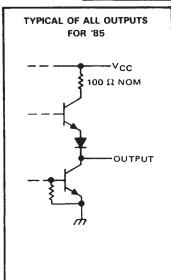
SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 - MARCH 1974 - REVISED MARCH 1988

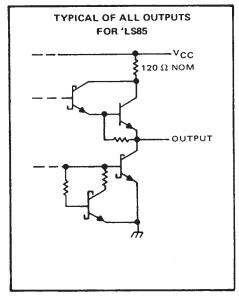
logic diagrams (positive logic)

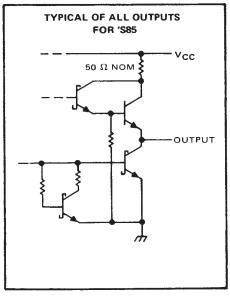
logic symbol†

[†]This symbol is in accordancee with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.




Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN54S'	SN54LS'	SN74' SN74S'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	٧
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	to 125	-0	to 70	°C
Storage temperature range	- 65	to 150	- 65	to 150	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN5485	5		SN7485	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TE	ST CONDIT	IONS†		MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage						2			V
VIL	Low-level input voltage								0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,		I _I = −12 mA				-1.5	V
Voн	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = 2	2 V, -400 μA	2.4	3.4		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = 2			0.2	0.4	V
11	Input current at maximum in	put voltage	V _{CC} = MAX,		V _I = 5.	5 V			1	mA
ΊΗ	High-level input current	A < B, A > B inputs all other inputs	V _{CC} = MAX,		V ₁ = 2.4	4 V			40 120	μА
11L	Low-level input current	A < B, A > B inputs	V _{CC} = MAX,		V _I = 0.4	4 V			-1.6 -4.8	mA
los	Short-circuit output current §		V _{CC} = MAX,	V _O = 0		SN5485 SN7485	-20 -18		-55 -55	mA
1 _{CC}	Supply current		V _{CC} = MAX,	See Note 4				55	88	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TY	P MAX	UNIT
		·	1			7	
	A A - D I	A < B, A > B	2]	10	2	
^t PLH	Any A or B data input		3]	1	7 26	ns
		A = B	4]	23	3 35	
			1]	1		
		A < B, A > B	2	C _L = 15 pF,	1!	5]
^t PHL	Any A or B data input		3	$R_L = 400 \Omega$,	20	30	ns
		A = B	4	See Note 5	20	30]
^t PLH	A < B or A = B	A > B	1	See Note 3		7 11	ns
^t PHL	A < B or A = B	A > B	1		1	17	ns
tPLH	A = 8	A = B	2	1	1;	3 20	ns
^t PHL	A = B	A = B	2	1	1	17	ns
^t PLH	A > B or A = B	A < B	1			7 11	ns
t _{PHL}	A > B or A = B	A < B	1	1	1	17	пѕ

 $[\]P_{tpLH}$ = propagation delay time, low-to-high-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	S	N54LS	35	S	N74LS	35	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS8	15	S	N74LS8	15	
	PARA	METER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input	voltage			2			2			V
VIL	Low-level input	voltage					0.7			0.7	٧
VIK	Input clamp vol	tage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	٧
	High-level outpu	it voltage	-	V _{1H} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		V
			V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output	it voltage	V _{IH} = 2 V, V _{IL} = V _{IL} max	1 _{OL} = 8 mA					0.35	0.5	L.
	Input current	A < B, A > B inputs		V = 7.V			0.1			0.1	mA
11	at maximum input voltage	all other inputs	V _{CC} = MAX,	V ₁ = 7 V			0.3			0.3	
	High-level	A < B, A > B inputs		W = 2.7.V			20			20	μΑ
ЧН	input current	all other inputs	VCC = MAX,	$V_1 = 2.7 V$			60			60	J # ^ _
	Low-level	A < B, A > B inputs		V == 0.4.V			-0.4			-0.4	mA
HL	input current	all other inputs	VCC = MAX,	V ₁ = 0.4 V			-1.2			-1.2	1
los	Short-circuit ou	tput current §	V _{CC} = MAX		-20		-100	-20		-100	mA
Icc	Supply current		VCC = MAX,	See Note 4		10.4	20		10.4	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM	то	NUMBER OF	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TANAME TEN	INPUT	OUTPUT	GATE LEVELS					
			1			14		1
		A < B, A > B	2			19		ns
^t PLH	Any A or B data input		3			24	36] '''
		A = B	4			27	45	
			1			11		
		A < B, A > B	2	0 15 5		15		ns
^t PHL	Any A or B data input		3	$C_L = 15 pF$		20	30] ""
		A = B	4	$R_L = 2 k\Omega$		23	45	1
tPLH	A < B or A = B	A > B	1	See Note 5		14	22	ns
tPHL	A < B or A = B	A > B	1			11	17	ns
tPLH	A = B	A = B	2			13	20	ns
tPHL	A = B	A = B	2			13	26	ns
tPLH	A > B or A = B	A < B	1	1		14	22	ns
tPHL	A > B or A = B	A < B	1			11	17	ns

 $[\]P_{tPLH}$ = propagation delay time, low-to-high-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. \ddagger Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output

Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN54S8	5		SN74S8	5	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	ONII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TES	T CONDITIONS	t	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			٧
VIL	Low-level input voltage							0.8	V
VIK	Input clamp voltage		VCC = MIN,	I ₁ = -18 mA				-1.2	V
			V _{CC} = MIN,	V _{IH} = 2 V,	SN54S85	2.5	3.4		v
VOH	High-level output voltage		V _{IL} = 0.8 V,	$I_{OH} = -1 \text{ mA}$	SN74S85	2.7	3.4		
			VCC = MIN,	V _{IH} = 2 V,				0.5	V
VOL	Low-level output voltage		V _{1L} = 0.8 V,	1 _{OL} = 20 mA				0.5	
11	Input current at maximum input	voltage	VCC = MAX,	V ₁ = 5.5 V				1	mA
	III-b I I i t i t	A < B, A > B inputs	V _{CC} = MAX,	V 27 V				50	μА
HII	High-level input current	all other inputs	VCC - MAA,	V - 2.7 V				150	-
		A < B, A > B inputs	VCC = MAX,	V. = 0.5.V				-2	mA
11L	Low-level input current	all other inputs	VCC - WAX,	V1 - 0.5 V				-6	1111
los	Short-circuit output current§		V _{CC} = MAX			-40		-100	mA
			V _{CC} = MAX,	See Note 4			73	115	
1cc	Supply current		V _{CC} = MAX, See Note 4	T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM INPUT	ТО ОПТРИТ	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		5		
		A < B, A > B	2		7.5		ns
^t PLH	Any A or B data input		3		10.5	16] ""
		A = B	4		12	18	
			1		5.5		
		A < B, A > B	2	0 45.5	7		ns
^t PHL	Any A or B data input		3	C _L = 15 pF,	11	16.5	115
		A = B	4	R _L = 280 Ω,	11	16.5	
tPLH	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
tPHL	A < B or A = B	A > B	1	1	5.5	8.5	ns
tPLH	A = B	A = B	2		7	10.5	ns
tPHL	A = B	A = B	2	1	5	7.5	ns
tPLH	A > B or A = B	A < B	1	1	5	7.5	ns
tPHL	A > B or A = B	A < B	1		5.5	8.5	ns

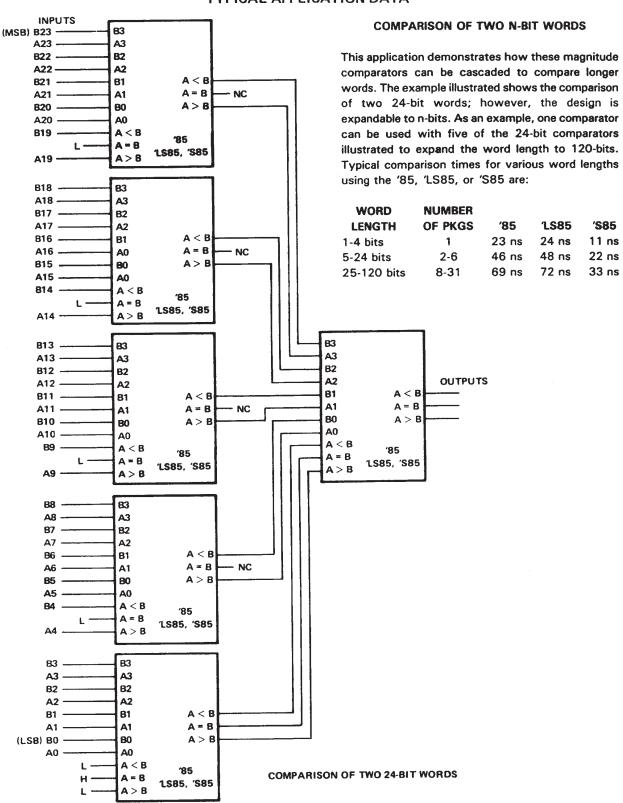
 $[\]P_{tpLH}$ = propagation delay time, low-to-high-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output



Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

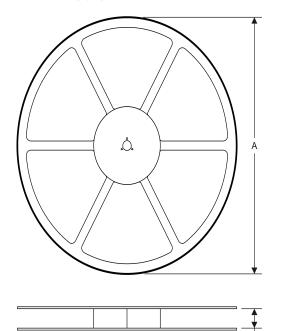
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988

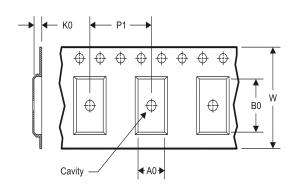
TYPICAL APPLICATION DATA

Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

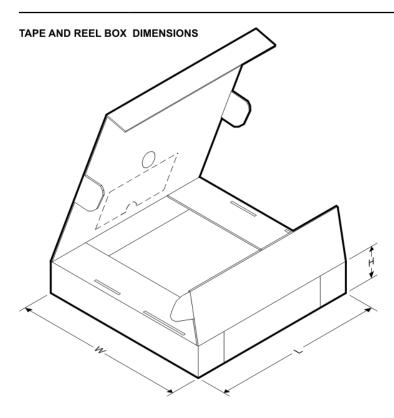
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS85DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS85NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1


Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS85DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS85NSR	SO	NS	16	2000	367.0	367.0	38.0

Products

OMAP Mobile Processors

Wireless Connectivity

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of SN74S85D - IC COMPARATOR MAGNITUDE 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com dsp.ti.com **Energy and Lighting** www.ti.com/energy Industrial Clocks and Timers www.ti.com/clocks www.ti.com/industrial Medical Interface interface.ti.com www.ti.com/medical www.ti.com/security Logic logic.ti.com Security www.ti.com/space-avionics-defense Power Mgmt power.ti.com Space, Avionics and Defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com

www.ti.com/omap TI E2E Community e2e.ti.com
www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated