

Excellent Integrated System Limited

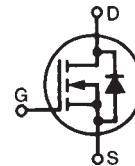
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[IXYS Corporation](#)

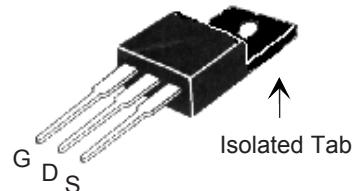
[IXFP3N50PM](#)

For any questions, you can email us directly:


sales@integrated-circuit.com

Preliminary Technical Information

**PolarHV™ HiPerFET IXFP 3N50PM
 Power MOSFET
 (Electrically Isolated Tab)**


N-Channel Enhancement Mode
 Avalanche Rated
 Fast Intrinsic Diode

V_{DSS} = 500 V
 I_{D25} = 2.7 A
 $R_{DS(on)}$ ≤ 2.0 Ω
 t_{rr} ≤ 200 ns

Symbol	Test Conditions	Maximum Ratings		
V_{DSS}	T_J = 25°C to 150°C	500		V
V_{DGR}	T_J = 25°C to 150°C; R_{GS} = 1 MΩ	500		V
V_{GSS}	Continuous	± 30		V
V_{GSM}	Transient	± 40		V
I_{D25}	T_c = 25°C	2.7		A
I_{DM}	T_c = 25°C, pulse width limited by T_{JM}	8		A
I_{AR}	T_c = 25°C	3		A
E_{AR}	T_c = 25°C	10		mJ
E_{AS}	T_c = 25°C	100		mJ
dv/dt	$I_s \leq I_{DM}$, $di/dt \leq 100$ A/μs, $V_{DD} \leq V_{DSS}$, $T_J \leq 150^\circ C$, $R_G = 50$ Ω	10		V/ns
P_D	T_c = 25°C	36		W
T_J		-55 ... +150		°C
T_{JM}		150		°C
T_{stg}		-55 ... +150		°C
T_L	1.6 mm (0.062 in.) from case for 10 s	300		°C
T_{SOLD}	Plastic body for 10 s	260		°C
M_d	Mounting torque	1.13/10	Nm/lb.in.	
Weight		4		g

**OVERMOLDED TO-220
 (IXTP...M) OUTLINE**

G = Gate D = Drain
 S = Source

Features

- ▀ Plastic overmolded tab for electrical isolation
- ▀ Fast intrinsic diode
- ▀ International standard package
- ▀ Unclamped Inductive Switching (UIS) rated
- ▀ Low package inductance
 - easy to drive and to protect

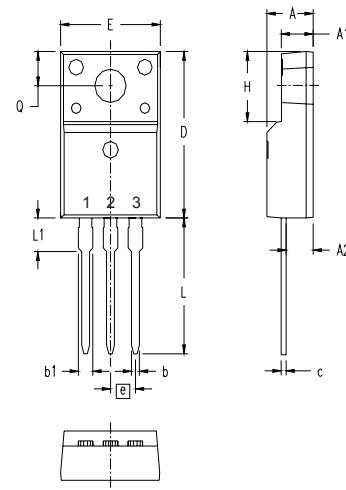
Advantages

- ▀ Easy to mount
- ▀ Space savings
- ▀ High power density

Symbol	Test Conditions (T_J = 25°C, unless otherwise specified)	Characteristic Values		
		Min.	Typ.	Max.
BV_{DSS}	$V_{GS} = 0$ V, $I_D = 250$ μA	500		V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250$ μA	3.0		5.5 V
I_{GSS}	$V_{GS} = \pm 30$ V _{DC} , $V_{DS} = 0$		±100	nA
I_{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0$ V		5 200	μA
$R_{DS(on)}$	$V_{GS} = 10$ V, $I_D = 1.8$ A Note 1		2.0	Ω

Symbol	Test Conditions	Characteristic Values		
		Min.	Typ.	Max.
g_{fs}	$V_{DS} = 10$ V; $I_D = 1.8$ A, Note 1	3.5	S	
C_{iss}		409	pF	
C_{oss}	$V_{GS} = 0$ V, $V_{DS} = 25$ V, $f = 1$ MHz	48	pF	
C_{rss}		6.1	pF	
$t_{d(on)}$		25	ns	
t_r		28	ns	
$t_{d(off)}$	$V_{GS} = 10$ V, $V_{DS} = 0.5$ V _{DSS} , $I_D = 3.6$ A	63	ns	
t_f	$R_G = 50$ Ω (External)	29	ns	
$Q_{g(on)}$		9.3	nC	
Q_{gs}	$V_{GS} = 10$ V, $V_{DS} = 0.5$ V _{DSS} , $I_D = 1.8$	3.3	nC	
Q_{gd}		3.4	nC	
R_{thJC}		3.5	°C/W	

Source-Drain Diode


Characteristic Values
 $(T_J = 25^\circ C$ unless otherwise specified)

Symbol	Test Conditions	Min.	Typ.	Max.
I_s	$V_{GS} = 0$ V			3.6 A
I_{SM}	Repetitive			5 A
V_{SD}	$I_F = I_s$, $V_{GS} = 0$ V, Note 1			1.5 V
t_{rr}			200	ns
Q_{RM}	$I_F = 3.6$ A, $-di/dt = 100$ A/ μ s,	0.1		μ C
I_{RM}	$V_R = 100$ V, $V_{GS} = 0$ V	0.5		A

Notes:

- 1) Pulse test, $t \leq 300$ μ s, duty cycle $d \leq 2$ %
- 2) Test current $I_T = 2.5$ A

ISOLATED TO-220 (IXTP...M)

Terminals: 1 - Gate
 2 - Drain (Collector)
 3 - Source (Emitter)

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.177	.193	4.50	4.90
A1	.092	.108	2.34	2.74
A2	.101	.117	2.56	2.96
b	.028	.035	0.70	0.90
b1	.050	.058	1.27	1.47
c	.018	.024	0.45	0.60
D	.617	.633	15.67	16.07
E	.392	.408	9.96	10.36
e	.100	BSC	2.54	BSC
H	.255	.271	6.48	6.88
L	.499	.523	12.68	13.28
L1	.119	.135	3.03	3.43
$\emptyset P$.121	.129	3.08	3.28
Q	.126	.134	3.20	3.40

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 one or more of the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2