

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SI1070X-T1-E3

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Si1070X

Vishay Siliconix

N-Channel 30 V (D-S) MOSFET

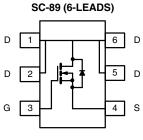
PRODU	CT SUMMARY		
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A)	Q _g (Typ.)
30	0.099 at V _{GS} = 4.5 V	1.2 ^a	3.5
	0.140 at V _{GS} = 2.5 V	1.0	0.0

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET[®] Power MOSFET
- 100 % R_g and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

Marking Code


U XX ≿

Load Switch for Portable Devices

Lot Traceability

and Date Code

Part # Code

Top View

Ordering Information: Si1070X-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS	S (T _A = 25 °C, unle	ess otherwise	e noted)	
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	30	v
Gate-Source Voltage		V _{GS}	± 12	v
Continuous Drain Quarant (T 150 °C)	T _A = 25 °C	1-	1.2 ^{b, c}	
Continuous Drain Current $(T_J = 150 \text{ °C})^a$	T _A = 70 °C	- I _D	1 ^{b, c}	А
Pulsed Drain Current		I _{DM}	6	A
Avalanche Current	L = 0.1 mH	I _{AS}	9	
Repetitive Avalanche Energy	L = 0.1 mH	E _{AS}	4.01	mJ
Continuous Source-Drain Diode Current	T _A = 25 °C	ا _S	0.2 ^{b, c}	А
	T _A = 25 °C	P _D	0.236 ^{b, c}	w
Maximum Power Dissipation ^a	T _A = 70 °C		0.151 ^{b, c}	vv
Operating Junction and Storage Temperature Ra	ange	T _J , T _{stg}	- 55 to 150	°C

THERMAL RESISTANCE RATING	S				
Parameter		Symbol	Typical	Maximum	Unit
Marine and the state of the state of the	t ≤ 5 s	R _{thJA}	440	530	°C/W
Maximum Junction-to-Ambient ^{b, d}	Steady State	' 'thJA	540	650	0/11

Notes:

a. Based on $T_C = 25 \ ^{\circ}C$.

b. Surface mounted on 1" x 1" FR4 board.

c. t = 5 s.

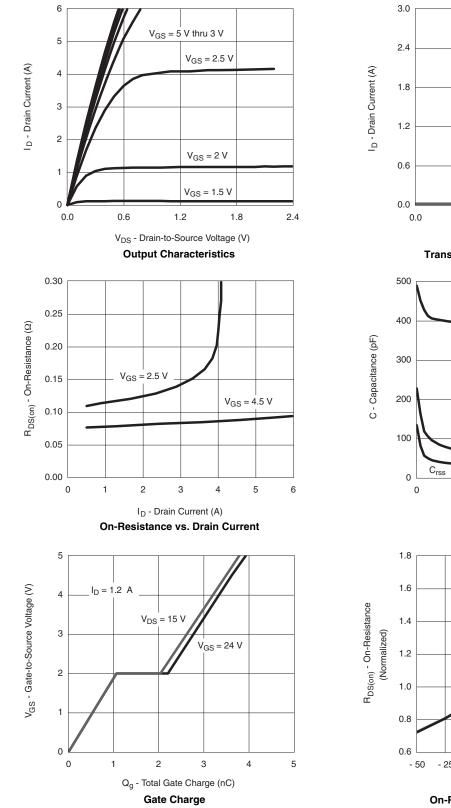
d. Maximum under steady state conditions is 650 $^\circ\text{C/W}.$

Si1070X

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static			1	<u>1</u>		1	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$	30			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA		24.5		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	$I_D = 250 \mu\text{A}$		- 3.81			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.7		1.55	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 12 V$			± 100	nA	
Zava Cata Valtaga Duoin Cuurrent	I	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1	nA	
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 85 ^{\circ}\text{C}$			10	μΑ	
On-State Drain Current ^a	I _{D(on)}	V_{DS} = \geq 5 V, V_{GS} = 4.5 V	6			А	
	Р	V _{GS} = 4.5 V, I _D = 1.2 A		0.082	0.099	0	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 1.0 A		0.116	0.140	Ω	
Forward Transconductance	9 _{fs}	V _{DS} = 15 V, I _D = 1.2 A		5		S	
Dynamic ^b			•	•			
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		385		pF	
Output Capacitance	C _{oss}			55			
Reverse Transfer Capacitance	C _{rss}			30			
Tatal Cata Charge	0	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 1.2 \text{ A}$		3.8	8.3		
Total Gate Charge	Qg			3.5	4.1		
Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 4.6 A		1.1		nC	
Gate-Drain Charge	Q _{gd}			0.98			
Gate Resistance	Rg	f = 1 MHz		4.7	6.2	Ω	
Turn-On Delay Time	t _{d(on)}			10	15		
Rise Time	t _r	V_{DD} = 15 V, R_L = 15 Ω		22	33	ns	
Turn-Off DelayTime	t _{d(off)}	$\text{I}_\text{D}\cong$ 1.0 A, V_GEN = 4.5 V, R_g = 1 Ω		14	21		
Fall Time	t _f			6	9	1	
Drain-Source Body Diode Characteris	lics		•	•			
Pulse Diode Forward Current ^a	I _{SM}				6	Α	
Body Diode Voltage	V _{SD}	I _S = 1.2 A		0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}			19.4	29.5	nC	
Body Diode Reverse Recovery Charge	Q _{rr}			18.43	27.5		
Reverse Recovery Fall Time	t _a	I _F = 3.8 A, dl/dt = 100 A/μs		16.4		ns	
Reverse Recovery Rise Time	t _b	1		3		1	

Notes:

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.


b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Si1070X Vishay Siliconix

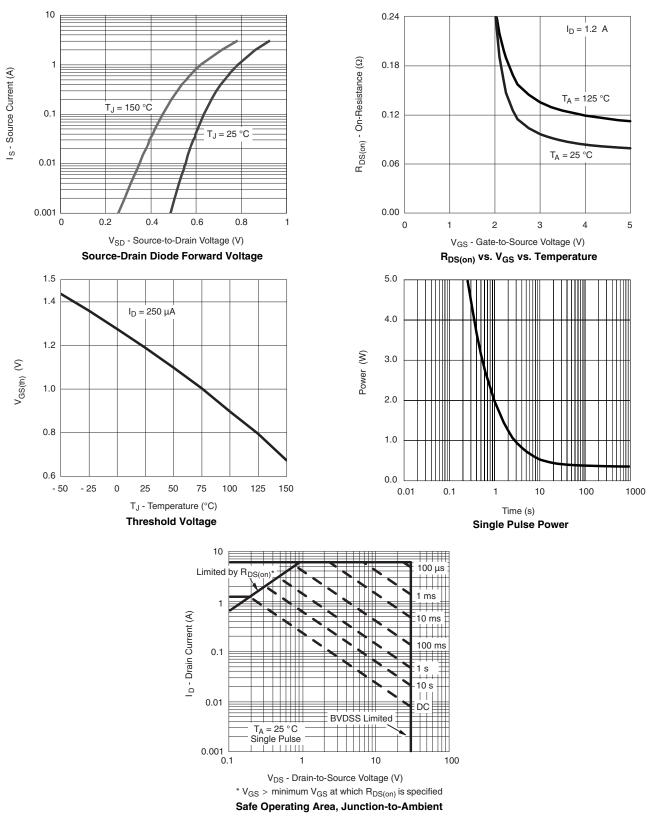
TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Document Number: 73893 S10-2542-Rev. D, 08-Nov-10

T_C = 125 °C $T_C = 25 °C$ - 55 °C 0.6 1.2 1.8 2.4 3.0 V_{GS} - Gate-to-Source Voltage (V) Transfer Characteristics Curves vs. Temp. C_{iss} Coss 6 30 12 18 24 V_{DS} - Drain-to-Source Voltage (V) Capacitance $V_{GS} = 4.5 V_{D}$ V_{GS} = 2.5 V I_D = 1 A

0.6 - 50 - 25 0 25 50 75 100 125 150 T_J - Junction Temperature (°C) On-Resistance vs. Junction Temperature

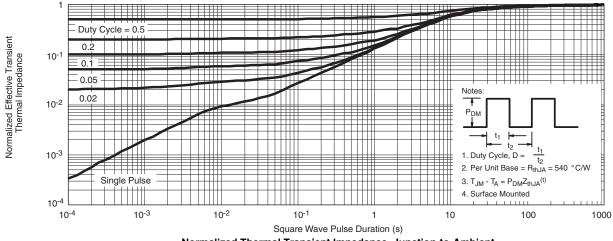
> www.vishay.com 3



Si1070X

VISHA

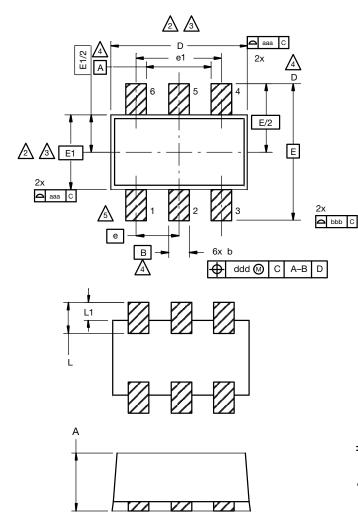
Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Si1070X Vishay Siliconix

Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73893.

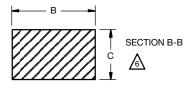


www.vishay.com

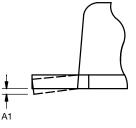
Package Information

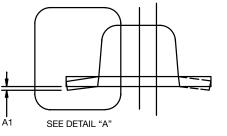
Vishay Siliconix

SC-89 6-Leads (SOT-563F)


Notes

- 1. Dimensions in millimeters.
- Δ Dimension D does not include mold flash, protrusions or gate burrs. Mold flush, protrusions or gate burrs shall not exceed 0.15 mm per dimension E1 does not include interlead flash or protrusion, interlead flash or protrusion shall not exceed 0.15 mm per side.
- A Dimensions D and E1 are determined at the outmost extremes of the plastic body exclusive of mold flash, the bar burrs, gate burrs and interlead flash, but including any mismatch between the top and the bottom of the plastic body.


A Datums A, B and D to be determined 0.10 mm from the lead tip.


A Terminal numbers are shown for reference only.

A These dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.

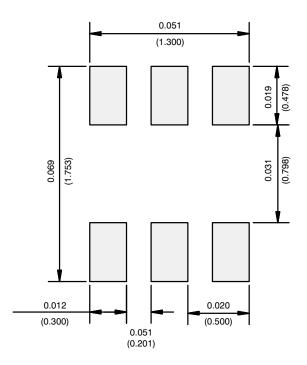
DIM.	MILLIMETERS				
	MIN.	NOM.	MAX.		
А	0.56	0.58	0.60		
A1	0	0.02	0.10		
b	0.15	0.22	0.30		
С	0.10	0.14	0.18		
D	1.50	1.60	1.70		
E	1.50	1.60	1.70		
E1	1.15	1.20	1.25		
е	0.45	0.50	0.55		
e1	0.95	1.00	1.05		
L	0.25	0.35	0.50		
L1	0.10	0.20	0.30		
C14-0439-Rev DWG: 5880	/. C, 11-Aug-14				

Revision: 11-Aug-14

1

For technical questions, contact: analogswitchtechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SC-89: 6-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.