

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SI4368DY-T1-E3

For any questions, you can email us directly: sales@integrated-circuit.com

Si4368DY

FREE Available

Vishay Siliconix

N-Channel Reduced Q_g , Fast Switching MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)			
30	0.0032 at V _{GS} = 10 V	25			
30	0.0036 at V _{GS} = 4.5 V	22			

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Extremely Low Q_{gd} for Switching Losses Improvement
- TrenchFET[®] Gen II Power MOSFET
- 100 % R_q Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Low-Side DC/DC Conversion
 - Notebook, Server, VRM Module
- · Fixed Telecom

N-Channel MOSFET

	SO-8		
S 1		8	D
S 2 S 3		6	D D
G 4		5	D
	Top View		

Ordering Information: Si4368DY-T1-E3 (Lead (Pb)-free)

Si4368DY-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS	T _A = 25 °C, unle	ess otherwise	noted)		
Parameter		Symbol	10 s	Steady State	Unit
Drain-Source Voltage		V _{DS}	30		V
Gate-Source Voltage		V _{GS}	± 12		
Continuous Drain Current (T _{.I} = 150 °C) ^a	T _A = 25 °C	- I _D	25	17	
Continuous Diairi Curient (1) = 150 °C)	T _A = 70 °C		20	13	
Pulsed Drain Current (10 μs Pulse Width)		I _{DM}	70		Α
Continuous Source Current (Diode Conduction) ^a		I _S	2.9	1.3	
Avalanch Current	L = 0.1 mH	I _{AS}	50		
Maximum Power Dissipation ^a	T _A = 25 °C	- P _D	3.5	1.6	W
waximum rowei Dissipation	T _A = 70 °C		2.2	1	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^a	t ≤ 10 s	R _{thJA}	29	35	°C/W	
Maximum Junction-to-Ambient	Steady State		67	80		
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	13	16		

Notes:

a. Surface mounted on 1" x 1" FR4 board.

Document Number: 72704 S11-0209-Rev. D, 14-Feb-11

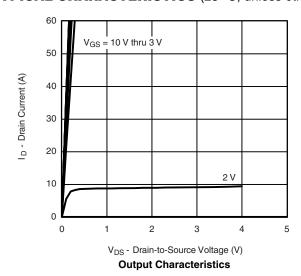
Distributor of Vishay/Siliconix: Excellent Integrated System Limited

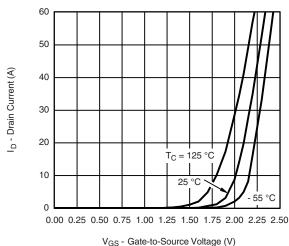
Datasheet of SI4368DY-T1-E3 - MOSFET N-CH 30V 17A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Si4368DY

Vishay Siliconix


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.6		1.8	V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			± 100	nA
Zoro Cata Valtaga Drain Current		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			1	μΑ
Zero Gate Voltage Drain Current	I _{DSS}				5	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	30			Α
Drain-Source On-State Resistance ^a		V _{GS} = 10 V, I _D = 25 A		0.0026	0.0032	Ω
Dialii-Source Oil-State nesistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 22 \text{ A}$		0.0029	0.0036	22
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 25 A		150		S
Diode Forward Voltage ^a	V_{SD}	I _S = 2.9 A, V _{GS} = 0 V		0.66	1.1	V
Dynamic ^b						
Input Capacitance	C _{iss}			8340		
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		850		pF
Reverse Transfer Capacitance	C _{rss}			355		
Total Gate Charge	Q_g			53	80	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$		17.5		nC
Gate-Drain Charge	Q_{gd}			6.5		
Gate Resistance	R_{g}	f = 1 MHz	0.8	1.2	1.8	Ω
Turn-On Delay Time	t _{d(on)}			25	38	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{I} = 15 \Omega$		20	30	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 6 \Omega$		172	260	ns
Fall Time	t _f	-		41	62	
Source-Drain Reverse Recovery Time	t _{rr}	I _E = 2.9 A, dl/dt = 100 A/μs		42	60	


Notes:

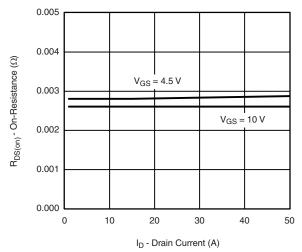
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

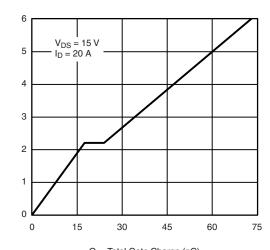
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

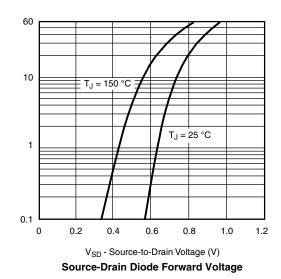
VGS - Gate-to-Source Voltage (V)

Transfer Characteristics

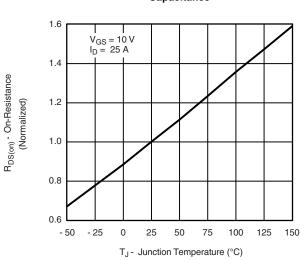

V_{GS} - Gate-to-Source Voltage (V)

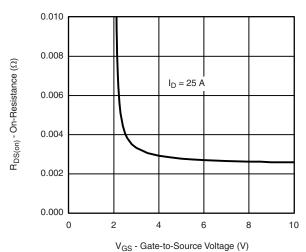
Is - Source Current (A)


Si4368DY


Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


On-Resistance vs. Drain Current



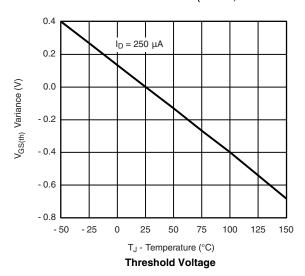
10000 C_{iss} 8000 C_{iss} 0000 C_{oss} 0000

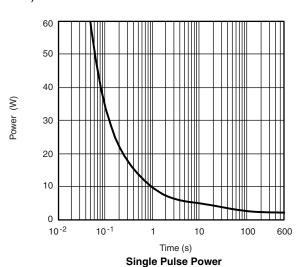
 V_{DS} - Drain-to-Source Voltage (V) $\label{eq:Capacitance}$

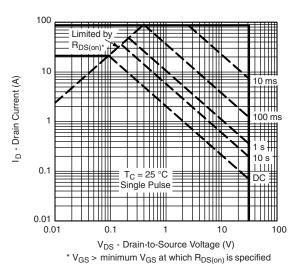
On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

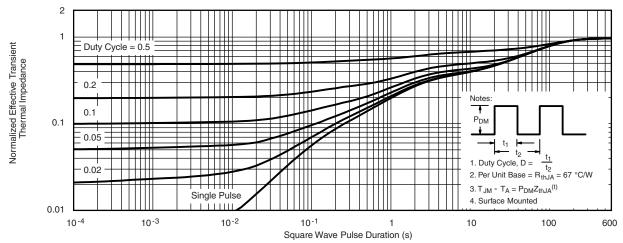
Document Number: 72704 S11-0209-Rev. D, 14-Feb-11




Si4368DY


Vishay Siliconix

VISHAY.

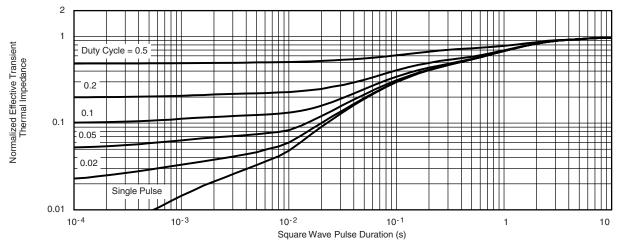

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Safe Operating Area, Junction-to-Case

Normalized Thermal Transient Impedance, Junction-to-Ambient

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SI4368DY-T1-E3 - MOSFET N-CH 30V 17A 8-SOIC


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Si4368DY

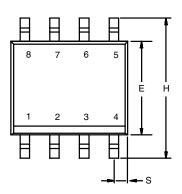
Vishay Siliconix

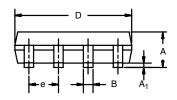
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

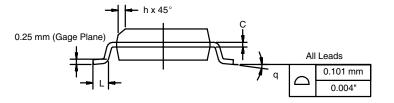
Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72704.

Document Number: 72704 www.vishay.com S11-0209-Rev. D, 14-Feb-11 5






Package Information

Vishay Siliconix

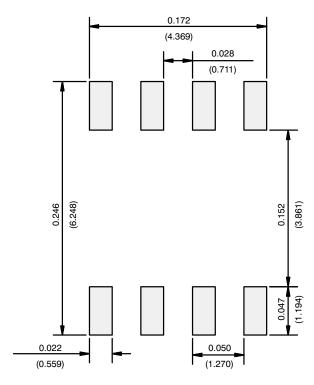
SOIC (NARROW): 8-LEADJEDEC Part Number: MS-012

	MILLIM	MILLIMETERS INCHES				
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050 BSC			
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
FCN: C-06527-Bey L 11-Sep-06						

ECN: C-06527-Rev. I, 11-Sep-06

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06 sww.vishay.com



Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

 \triangleleft

22

www.vishay.com Document Number: 72606 Revision: 21-Jan-08

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SI4368DY-T1-E3 - MOSFET N-CH 30V 17A 8-SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000