

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments ISO7240ADW

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

TEXAS INSTRUMENTS

www.ti.com

ISO7240A ISO7241A ISO7242A

SLLS905E - MAY 2008 - REVISED JANUARY 2010

1-Mbps QUAD DIGITAL ISOLATORS

Check for Samples: ISO7240A, ISO7241A, ISO7242A

FEATURES

- 4000-V_{peak} Isolation, 560-V_{peak} V_{IORM}
 - UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2), IEC 61010-1, IEC 60950-1 and CSA Approved
- 4 kV ESD Protection
- Operate With 3.3-V or 5-V Supplies
- Typical 25-Year Life at Rated Working Voltage (See Application Note (SLLA197) and Figure 10)
- High Electromagnetic Immunity (See Application Report (SLLA181))
- -40°C to 125°C Operating Range

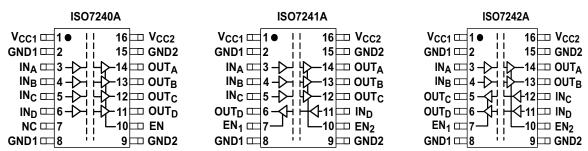
DESCRIPTION

APPLICATIONS

Industrial Fieldbus

- Computer Peripheral Interface
- Servo Control Interface
- Data Acquisition

See the Product Notification section. The ISO7240A, ISO7241A and ISO7242A are quad-channel digital isolators with multiple channel configurations and output enable functions. These devices have logic input and output buffers separated by TI's silicon dioxide (SiO₂) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry.


The ISO7240A has all four channels in the same direction while the ISO7241A has three channels the same direction and one channel in opposition. The ISO7242A has two channels in each direction.

The devices have TTL input thresholds and a noise-filter at the input that prevents transient pulses from being passed to the output of the device.

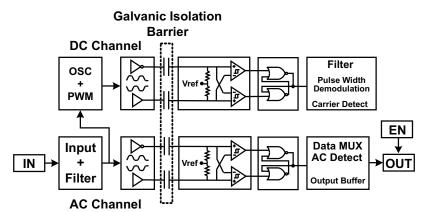
A periodic update pulse is sent across the barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. (See ISO7240CF (SLLS869) or contact TI for a logic low failsafe option).

These devices may be powered from either 3.3-V or 5-V supplies on either side in any 3.3-V / 3.3-V , 5-V / 5-V, 5-V / 3.3-V, or 3.3-V / 5-V combination. Note that the signal input pins are 5-V tolerant regardless of the voltage supply level being used.

These devices are characterized for operation over the ambient temperature range of -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Not Recommended for New Designs



SLLS905E – MAY 2008–REVISED JANUARY 2010

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTION DIAGRAM

Table 1. Device Function Table ISO724x ⁽¹⁾

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
		Н	H or Open	Н
DU	PU	L	H or Open	L
PU		Х	L	Z
		Open H or Open		Н
PD	PU	Х	H or Open	Н
PD	PU	Х	L	Z

(1) PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level

AVAILABLE OPTIONS

PRODUCT	SIGNALING RATE	INPUT THRESHOLD	CHANNEL CONFIGURATION	MARKED AS	ORDERING NUMBER ⁽¹⁾
ISO7240ADW	1 Mbps	~1.5 V (TTL)	4/0	ISO7240A	ISO7240ADW (rail)
1507240ADW	i ivibps	(CMOS compatible)	4/0	1507240A	ISO7240ADWR (reel)
ISO7241ADW	1 Mhao	~1.5 V (TTL)	3/1	ISO7241A	ISO7241ADW (rail)
1507241ADW	1 Mbps	(CMOS compatible)	3/1	1507241A	ISO7241ADWR (reel)
	1 Mhaa	~1.5 V (TTL)	2/2	10072424	ISO7242ADW (rail)
ISO7242ADW	1 Mbps	(CMOS compatible)	212	ISO7242A	ISO7242ADWR (reel)

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Texas

INSTRUMENTS

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of ISO7240ADW - DGTL ISO 4KV 4CH GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Not Recommended for New Designs

www.ti.com

ISO7240A ISO7241A ISO7242A

SLLS905E - MAY 2008 - REVISED JANUARY 2010

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

					VALUE	UNIT
V_{CC}	Supply voltage	ge ⁽²⁾ , V _{CC1} , V _{CC2}			-0.5 to 6	V
VI	Voltage at IN	, OUT, EN			-0.5 to 6	V
Ιo	Output currer	nt			±15	mA
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01		±4	
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1	kV
		Machine Model	ANSI/ESDS5.2-1996		±200	V
TJ	Maximum junction temperature					

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal and are peak voltage values.

RECOMMENDED OPERATING CONDITIONS

			MIN	ΤΥΡ	MAX	UNIT
V_{CC}	Supply voltage ⁽¹⁾ , V _{CC1} , V _{CC2}		3.15		5.5	V
I _{OH}	High-level output current				4	mA
I _{OL}	Low-level output current		-4			mA
t _{ui}	Input pulse width	ISO724xA	1			μS
1/t _{ui}	Signaling rate	ISO724xA	0		1000	kbps
V_{IH}	High-level input voltage (IN) (EN on all devices)	ISO724xA	2		V_{CC}	V
V_{IL}	Low-level input voltage (IN) (EN on all devices)	150724XA	0		0.8	V
TJ	Junction temperature	·			150	°C
н	External magnetic field-strength immunity per IEC certification	C 61000-4-8 and IEC 61000-4-9			1000	A/m

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

IEC 60747-5-2 INSULATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATIONS	UNIT
V _{IORM}	Maximum working insulation voltage		560	V
		After Input/Output Safety Test Subgroup 2/3 $V_{PR} = V_{IORM} \times 1.2$, t = 10 s, Partial discharge < 5 pC	672	V
V _{PR}	Input to output test voltage	Method a, $V_{PR} = V_{IORM} \times 1.6$, Type and sample test with t = 10 s, Partial discharge < 5 pC	896	V
		Method b1, $V_{PR} = V_{IORM} \times 1.875$, 100 % Production test with t = 1 s, Partial discharge < 5 pC	1050	V
V _{IOTM}	Transient overvoltage	t = 60 s	4000	V
R _S	Insulation resistance	$V_{IO} = 500 \text{ V at } T_{S}$	>10 ⁹	Ω
	Pollution degree		2	

(1) Climatic Classification 40/125/21

Not Recommended for New Designs

TEXAS INSTRUMENTS

SLLS905E - MAY 2008 - REVISED JANUARY 2010

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{cc1} and V_{cc2} at 5-V⁽¹⁾ OPERATION

, over recommended operating conditions (unless otherwise noted)

	PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT		-				
	10070404	Quiescent			1	3	
	ISO7240A	1 Mbps	$V_1 = V_{CC}$ or 0 V, All channels, no load, EN ₂ at 3 V		1	3	mA
	ISO7241A	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		6.5	11	m ^
I _{CC1}	1507241A	1 Mbps	EN ₂ at 3 V		0.5	11	mA
	ISO7242A	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		10	16	mA
	1507242A	1 Mbps	EN ₂ at 3 V		10	16	
	ISO7240A	Quiescent	(-)(-)(-) or $(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)($		15	22	mA
	1507240A	1 Mbps	- V _I = V _{CC} or 0 V, All channels, no load, EN ₂ at 3 V		16	22	mA
	ISO7241A	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		13	20	mA
I _{CC2}	1507241A	1 Mbps	EN ₂ at 3 V		13	20	
	19072424	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		10	16	mA
	ISO7242A	1 Mbps	EN ₂ at 3 V		10	16	ШA
ELECT	RICAL CHAR	ACTERISTICS					
I _{OFF}	Sleep mode	e output current	EN at 0 V, Single channel		0		μA
V		output voltage	I _{OH} = -4 mA, See Figure 1	$V_{CC} - 0.8$			V
V _{OH}	r ligh-level c	auput voltage	$I_{OH} = -20 \ \mu A$, See Figure 1	$V_{CC} - 0.1$	V _{CC} – 0.1		
V		utput voltage	I _{OL} = 4 mA, See Figure 1			0.4	V
V _{OL}	Low-level o	ulput voltage	I _{OL} = 20 μA, See Figure 1			0.1	v
V _{I(HYS)}	Input voltag	e hysteresis			150		mV
I _{IH}	High-level input current Low-level input current		IN from 0 V to V _{CC}			10	μA
IIL				-10			μΛ
CI	Input capac	itance to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF
CMTI	Common-m	ode transient immunity	$V_I = V_{CC}$ or 0 V, See Figure 4	25	50		kV/μs
				1			

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{cc1} and V_{cc2} at 5-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		40		95	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 1			10	ns
t _{sk(o)}	Channel-to-channel output skew (2)				2	ns
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	20	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μS

(1) Also referred to as pulse skew.

(2) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

Not Recommended for New Designs

ISO7240A ISO7241A ISO7242A

www.ti.com

SLLS905E - MAY 2008 - REVISED JANUARY 2010

ELECTRICAL CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAM	ETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT		,					
	10070404	Quiescent				1	3	
	ISO7240A	1 Mbps	$V_{I} = V_{CC}$ or 0 V, All channels	, no load, EN_2 at 3 V		1	3	mA
	10070444	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels	, no load, EN₁ at 3 V,		0.5		
I _{CC1}	ISO7241A	1 Mbps	EN ₂ at 3 V	· · · · ·		6.5	11	mA
	10070404	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels	, no load, EN₁ at 3 V,		10	16	
	ISO7242A	1 Mbps	EN ₂ at 3 V			10	16	mA
	10070404	Quiescent		$V_1 = V_{CC}$ or 0 V, All channels, no load, EN ₂ at 3 V		9.5	15	
	ISO7240A	1 Mbps	$V_{I} = V_{CC}$ or 0 V, All channels	, no load, EN_2 at 3 V		10	15	mA
	10070444	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		8	13	m 4
I _{CC2}	ISO7241A	1 Mbps	EN ₂ at 3 V	·		8	13	mA
	10070404	Quiescent	V _I = V _{CC} or 0 V, All channels	, no load, EN₁ at 3 V,		6	10	0
	ISO7242A	1 Mbps	EN ₂ at 3 V			6	10	mA
ELECT	RICAL CHARAG	CTERISTICS						
I _{OFF}	Sleep mode o	output current	EN at 0 V, Single channel			0		μA
				ISO7240A				
V _{OH}	High-level out	put voltage	$I_{OH} = -4$ mA, See Figure 1	ISO724x (5-V side)	V _{CC} – 0.8			V
			$I_{OH} = -20 \ \mu A$, See Figure 1		V _{CC} - 0.1			
V			I _{OL} = 4 mA, See Figure 1				0.4	V
V _{OL}	Low-level out	out voltage	I_{OL} = 20 μ A, See Figure 1				0.1	V
V _{I(HYS)}	Input voltage	hysteresis				150		mV
I _{IH}	High-level inp	ut current					10	A
IIL	Low-level inpu	ut current	IN from 0 V to V _{CC}		-10			μA
CI	Input capacita	ince to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi)$	t)		2		pF
CMTI	Common-mod	le transient immunity	$V_{I} = V_{CC}$ or 0 V, See Figure 4	4	25	50		kV/μs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH} , t _{PHL}	Propagation delay		40		100		
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	See Figure 1			11	ns	
•	Channel-to-channel output skew (2)				3	20	
t _{sk(o)}) <u>100</u> 11	ns		
t _r	Output signal rise time	See Figure 1		2			
t _f	Output signal fall time	See Figure 1		2		ns	
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20		
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	20		
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	20	ns	
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20		
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μS	

(1) Also known as pulse skew

(2) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

Copyright © 2008–2010, Texas Instruments Incorporated

Not Recommended for New Designs

TEXAS INSTRUMENTS

SLLS905E - MAY 2008 - REVISED JANUARY 2010

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{CC1} at 3.3-V, V_{CC2} at 5-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted) PARAMETER **TEST CONDITIONS** MIN TYP MAX UNIT SUPPLY CURRENT Quiescent 0.5 1 ISO7240A VI = VCC or 0 V, All channels, no load, EN2 at 3 V mΑ 2 1 Mbps 1 4 7 Quiescent ISO7241A V_I = V_{CC} or 0 V, All channels, no load, EN₁ at 3 V, EN₂ at 3 V I_{CC1} mΑ 7 1 Mbps 4 6 10 Quiescent ISO7242A VI = V_{CC} or 0 V, All channels, no load, EN1 at 3 V, EN2 at 3 V mΑ 10 1 Mbps 6 Quiescent 15 22 ISO7240A VI = VCC or 0 V, All channels, no load, EN2 at 3 V mΑ 1 Mbps 16 22 Quiescent 13 20 VI = VCC or 0 V, All channels, no load, EN1 at 3 V, EN2 at 3 V I_{CC2} ISO7241A mΑ 20 1 Mbps 13 Quiescent 10 16 ISO7242A V_I = V_{CC} or 0 V, All channels, no load, EN₁ at 3 V, EN₂ at 3 V mΑ 16 10 1 Mbps ELECTRICAL CHARACTERISTICS 0 Sleep mode output current EN at V_{CC}, Single channel μΑ IOFF ISO7240A $V_{CC} - 0.4$ I_{OH} = -4 mA, See Figure 1 V_{OH} High-level output voltage ISO724x (5-V side) V_{CC} - 0.8 V V_{CC} – 0.1 $I_{OH} = -20 \ \mu A$, See Figure 1 I_{OL} = 4 mA, See Figure 1 0.4 V_{OL} V Low-level output voltage $I_{OL} = 20 \ \mu A$, See Figure 1 0.1 VI(HYS) Input voltage hysteresis 150 m٧ High-level input current 10 I_{H} IN from 0 V to V_{CC} μΑ Low-level input current -10 Ι_{ΙL} CI Input capacitance to IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$ 2 pF ground $V_I = V_{CC}$ or 0 V, See Figure 4 Common-mode transient CMTI 25 50 kV/μs immunity

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{CC1} at 3.3-V and V_{CC2} at 5-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	See Figure 1	40		100	20
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 1			11	ns
	Channel to channel output alrow ⁽²⁾				2.5	20
t _{sk(o)}	Channel-to-channel output skew ⁽²⁾			0	1	ns
t _r	Output signal rise time			2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	20	20
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μS

(1) Also known as pulse skew

(2) t_{sk(c)} is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of ISO7240ADW - DGTL ISO 4KV 4CH GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Not Recommended for New Designs

ISO7240A ISO7241A ISO7242A

SLLS905E - MAY 2008 - REVISED JANUARY 2010

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3 $V^{(1)}$ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAN	IETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT		*				
	10070404	Quiescent)/)/ an 0)/ all sharpeds as least ENL at 0)/		0.5	1	0
	ISO7240A	1 Mbps	$V_1 = V_{CC}$ or 0 V, all channels, no load, EN ₂ at 3 V		1	2	mA
	ISO7241A	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V,		4	7	
I _{CC1}	1507241A	1 Mbps	EN ₂ at 3 V		4	7	m۸
	10070404	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V,		6	10	mA
	ISO7242A	1 Mbps	EN ₂ at 3 V		6	10	
	10070404	Quiescent			9.5	15	0
	ISO7240A	1 Mbps	- V _I = V _{CC} or 0 V, all channels, no load, EN ₂ at 3 V		10	15	mA
	10070444	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V,		8	13	
I _{CC2}	ISO7241A	1 Mbps	EN ₂ at 3 V		8	13	0
	ISO7242A	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load, EN ₁ at 3 V,		6	10	mA
	1507242A	$\frac{1}{1 \text{ Mbps}} = \frac{1}{1 M$	10				
ELECT	RICAL CHARAC	TERISTICS					
I _{OFF}	Sleep mode ou	utput current	EN at 0 V, single channel		0		μA
V			I _{OH} = -4 mA, See Figure 1	V _{CC} - 0.4			V
V _{OH}	High-level outp	out voltage	t voltage $I_{OH} = -20 \ \mu A$, See Figure 1				v
N/			I _{OL} = 4 mA, See Figure 1			0.4	V
V _{OL}	Low-level outp	ut voltage	I _{OL} = 20 μA, See Figure 1			0.1	v
V _{I(HYS)}	Input voltage hysteresis				150		mV
I _{IH}	High-level input current Low-level input current					10	۸
IIL			IN from 0 V or V _{CC}	-10			μA
CI	Input capacitar	nce to ground	IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		2		pF
CMTI	Common-mod	e transient immunity	$V_{I} = V_{CC}$ or 0 V, See Figure 4	25	50		kV/μs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SWITCHING CHARACTERISTICS: V_{cc1} and V_{cc2} at 3.3-V OPERATION

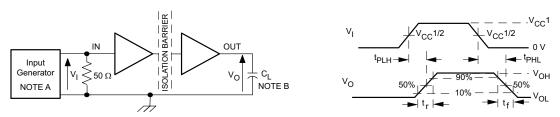
over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		45		110	
PWD	Pulse-width distortion t _{PHL} – t _{PLH} ⁽¹⁾	- See Figure 1			12	ns
	Channel-to-channel output skew (2)				3.5	
t _{sk(o)}	Channel-to-channel output skew (-)			0	1	1 ns
t _r	Output signal rise time			2		
t _f	Output signal fall time	- See Figure 1		2		
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	20	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	- See Figure 2		15	20	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μS

(1) Also referred to as pulse skew.

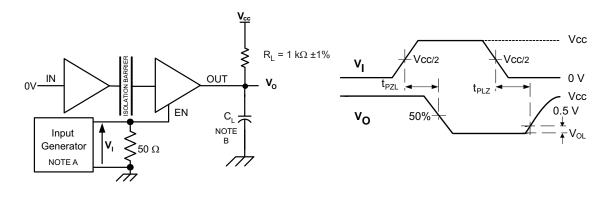
(2) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

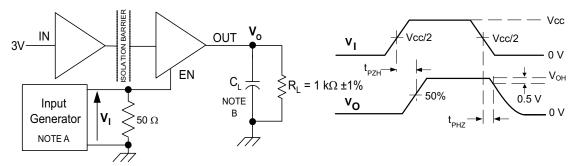
Copyright © 2008–2010, Texas Instruments Incorporated


Not Recommended for New Designs

SLLS905E – MAY 2008–REVISED JANUARY 2010

www.ti.com


PARAMETER MEASUREMENT INFORMATION



A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω .

B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform

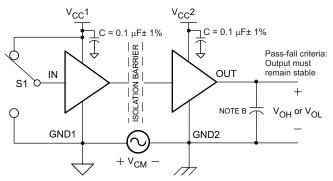
INSTRUMENTS

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of ISO7240ADW - DGTL ISO 4KV 4CH GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Not Recommended for New Designs

www.ti.com

ISO7240A ISO7241A ISO7242A


SLLS905E - MAY 2008 - REVISED JANUARY 2010

PARAMETER MEASUREMENT INFORMATION (continued)

- A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .

Figure 3. Failsafe Delay Time Test Circuit and Voltage Waveforms

- A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .

Figure 4. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

Not Recommended for New Designs

www.ti.com

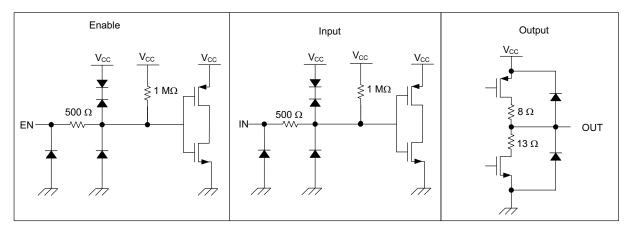
SLLS905E - MAY 2008 - REVISED JANUARY 2010

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal-to-terminal distance through air	8.34			mm
L(102)	Minimum external tracking (Creepage)	Shortest terminal-to-terminal distance across the package surface	8.1			mm
C _{TI}	Tracking resistance (comparative tracking index)	DIN IEC 60112/VDE 0303 Part 1	≥ 175			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
CIO	Barrier capacitance Input to output	V _I = 0.4 sin (4E6πt)		2		pF
CI	Input capacitance to ground	V _I = 0.4 sin (4E6πt)		2		pF

IEC 60664-1 RATINGS TABLE


PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	Illa
Installation description	Rated mains voltage ≤150 VRMS	I-IV
Installation classification	Rated mains voltage ≤300 VRMS	-

REGULATORY INFORMATION

VDE	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾
File Number: 40016131	File Number: 1698195	File Number: E181974

(1) Production tested \geq 3000 Vrms for 1 second in accordance with UL 1577.

DEVICE I/O SCHEMATICS

Texas

INSTRUMENTS

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of ISO7240ADW - DGTL ISO 4KV 4CH GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Not Recommended for New Designs

www.ti.com

ISO7241A ISO7242A

ISO7240A

SLLS905E - MAY 2008 - REVISED JANUARY 2010

THERMAL CHARACTERISTICS

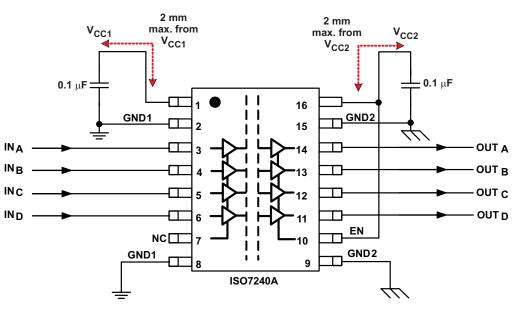
over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	lunction to pir	Low-K Thermal Resistance ⁽¹⁾	168			°C/W
θ_{JA}	Junction-to-air	High-K Thermal Resistance	96.1			C/W
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
PD	Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, \text{ T}_{J} = 150^{\circ}\text{C}, \text{ C}_{L} = 15 \text{ pF},$ Input a 50% duty cycle square wave			220	mW

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

TYPICAL CHARACTERISTIC CURVES INPUT VOLTAGE THRESHOLD V_{CC1} FAILSAFE THRESHOLD vs FREE-AIR TEMPERATURE vs FREE-AIR TEMPERATURE 1.4 V_{CC} at 5 V or 3.3 V, 5 V V_{th+} Load = 15 pF, Air Flow at 7/cf/m, Low-K Board 2.9 1.35 V_{CC1} - Failsafe Threshold - V 2.8 1.3 Input Voltage Threshold - V 3.3 V V_{th+} 2.7 1.25 2.6 1.2 Air Flow at 7 cf/m Low_K Board 2.5 V_{fs} 2.4 1.15 5 V V_{th} 2.3 1.1 2.2 1.05 3.3 V V_{th}. 2.1 5 20 35 50 00 T_A - Free-Air Temperature - °C -40 -25 -10 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 T_A - Free-Air Temperature - °C Figure 5. Figure 6. **HIGH-LEVEL OUTPUT CURRENT** LOW-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT VOLTAGE 50 50 Load = 15 pF, T_A = 25°C Load = 15 pF, V_{CC} = 5 V T_A = 25°C 45 40 40 - Output Current - mA 35 V_{CC} = 3.3 V Io - Output Current - mA V_{CC} = 3.3 V 30 30 25 V_{CC} = 5 V 20 20 ் 15 10 10 F 0 0 L 1 4 2 V_o - Output Voltage - V 0 2 V_o - Output Voltage - V 5 Figure 7. Figure 8.

Copyright © 2008–2010, Texas Instruments Incorporated



Not Recommended for New Designs

TEXAS INSTRUMENTS

www.ti.com

SLLS905E – MAY 2008–REVISED JANUARY 2010

APPLICATION INFORMATION

Figure 9. Typical ISO7240A Application Circuit

LIFE EXPECTANCY vs. WORKING VOLTAGE

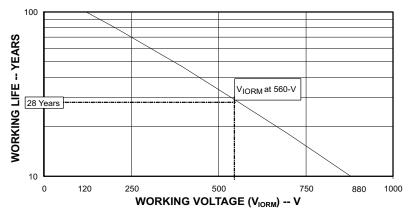


Figure 10. Time-Dependant Dielectric Breakdown Testing Results

TEXAS INSTRUMENTS

Not Recommended for New Designs

www.ti.com

SLLS905E - MAY 2008 - REVISED JANUARY 2010

PRODUCT NOTIFICATION

An ISO724xA anomaly occurs when a negative-going pulse below the specified 1 μ s minimum bit width is input to the device. The output locks in a logic-low condition until the next rising edge occurs after a 1 μ s period.

Positive noise edges in pulses of less than the minimum specified 1 μ s have no effect on the device, and are properly filtered.

To prevent noise from interfering with ISO724xA performance, it is recommended that an appropriately sized capacitor be placed on each input of the device

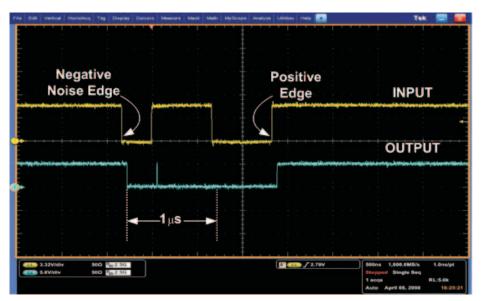
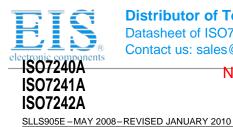



Figure 11. ISO724xA Anomaly

REVISION HISTORY

Changes from Original (May 2008) to Revision A	Page
Changed In the PACKAGE CHARACTERISTICS table, line 1, change L _(IO1) MIN value from 7.7mm	n to 8.34mm 10
Changes from Revision A (July 2008) to Revision B	Page
Added information to the 1st Feature bullet to include CSA and IEC 60950-1 certification	1
Changed Figure 9 From: 20mm max.from V _{CCx} To: 2mm max. from V _{CCx}	12
Changes from Revision B (December 2008) to Revision C Changed I _{CC1} for Quiescent and 1Mbps From: 10mA To: 11mA	Page
Changed I _{CC1} for Quiescent and 1Mbps From: 10mA To: 11mA	
Changes from Revision C (March 2009) to Revision D	Paga
	Page

Not Recommended for New Designs

TEXAS INSTRUMENTS

www.ti.com

CI	hanges from Revision D (December 2009) to Revision E	Page
•	Added the IEC 60747-5-2 INSULATION CHARACTERISTIC table	3
•	Added C _{TI} - Tracking resistance (comparative tracking index to the PACKAGE CHARACTERISTICS table	10
٠	Added the IEC 60664-1 RATINGS TABLE	10

9-Sep-2014

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7240ADW	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7240A	
ISO7240ADWG4	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7240A	
ISO7240ADWR	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7240A	
ISO7240ADWRG4	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7240A	
ISO7241ADW	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7241A	
ISO7241ADWG4	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7241A	
ISO7241ADWR	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7241A	
ISO7241ADWRG4	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7241A	
ISO7242ADW	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7242A	
ISO7242ADWG4	NRND	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7242A	
ISO7242ADWR	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7242A	
ISO7242ADWRG4	NRND	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO7242A	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Addendum-Page 1

9-Sep-2014

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

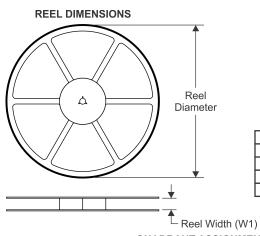
OTHER QUALIFIED VERSIONS OF ISO7241A :

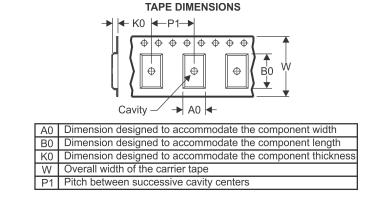
Enhanced Product: ISO7241A-EP

NOTE: Qualified Version Definitions:

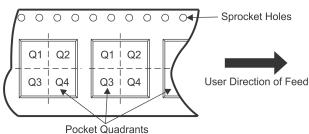
• Enhanced Product - Supports Defense, Aerospace and Medical Applications

Addendum-Page 2




PACKAGE MATERIALS INFORMATION

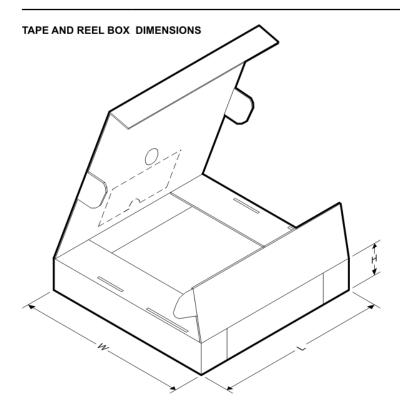
17-Feb-2014


TAPE AND REEL INFORMATION

*All dimensions are nominal

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7240ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7241ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7242ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

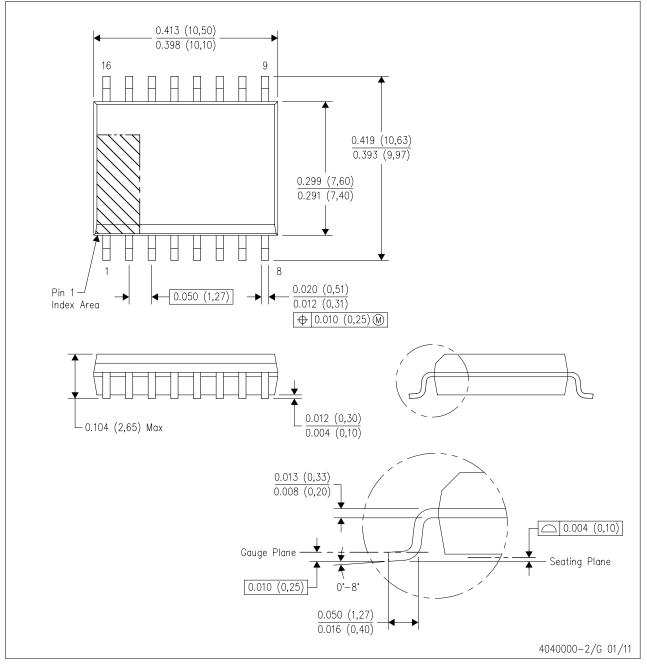


Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of ISO7240ADW - DGTL ISO 4KV 4CH GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

17-Feb-2014

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7240ADWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7241ADWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7242ADWR	SOIC	DW	16	2000	367.0	367.0	38.0

MECHANICAL DATA

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

LAND PATTERN DATA

PLASTIC SMALL OUTLINE

HV / ISOLATION OPTION 8.1 mm NOMINAL CLEARANCE/CREEPAGE IPC-7351 NOMINAL 7.3 mm NOMINAL CLEARANCE/CREEPAGE SYMM SYMM 16X (2)-16X (1.65)--SEE DETAILS -SEE DETAILS]16] 16 16X (0.6)-16X (0.6) SYMM —⊈ SYMM 14X (1.27) 14X (1.27) Г Г 8 E] 9 8 🗆]9 -(9.75)-(9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL HV / ISOLATION OPTION IPC-7351 NOMINAL SYMM ¢ 16X (1.65) 16X (2)]16 16 16X (0.6)-16X (0.6)-SYMM SYMM ¢ --14X (1.27)-Г 14X (1.27)-٦ 8 C 8]9 <u>⊟</u>9 (9.3)-(9.75) SOLDER MASK DETAILS NON SOLDER MASK DEFINED SOLDER MASK DEFINED -SOLDER MASK OPENING SOLDER MASK METAL METAL OPENING 0.07 MIN 0.07 MAX ALL AROUND ALL AROUND 4209202-7/F 08/13 NOTES: All linear dimensions are in millimeters. A. Β. This drawing is subject to change without notice. Refer to IPC7351 for alternate board design. C.

- D. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- E. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- F. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated